洛谷 P4317 花神的数论题(组合数)
题面
题解
组合数
枚举有多少个\(1\),求出有多少种数
扫描\(n\)的每一位\(1\), 强制选\(0\)然后组合数算一下有多少种方案
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 55, Mod = 10000007;
LL C[N][N], cnt, a[N];
inline LL Pow(int a, LL b) {
LL s = 1;
for (LL x = a; b; b >>= 1, x = x*x%Mod) if (b&1) s = s*x%Mod;
return s;
}
int main() {
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
for (int i = 0; i <= 50; i++) C[i][i] = C[i][0] = 1;
for (int i = 2; i <= 50; i++)
for (int j = 1; j < i; j++)
C[i][j] = C[i-1][j-1]+C[i-1][j];
LL n; read(n);
for (int i = 50; i >= 0; i--) {
if ((n>>i)&1) {
for (int j = 1; j <= i; j++)
a[j+cnt] += C[i][j];//至少选1个的方案
a[++cnt]++;//不选的方案(必须分开算,不然会有重复计算)
}
}
LL ans = 1;
for (int i = 1; i <= 50; i++)
ans = ans*Pow(i, a[i])%Mod;
printf("%lld\n", ans);
return 0;
}
洛谷 P4317 花神的数论题(组合数)的更多相关文章
- DP,数论————洛谷P4317 花神的数论题(求1~n二进制中1的个数和)
玄学代码(是洛谷题解里的一位dalao小粉兔写的) //数位DP(二进制)计算出f[i]为恰好有i个的方案数. //答案为∏(i^f[i]),快速幂解决. #include<bits/stdc+ ...
- 洛谷P4317 花神的数论题
洛谷题目链接 数位$dp$ 我们对$n$进行二进制拆分,于是就阔以像十进制一样数位$dp$了,基本就是套模板.. 接下来是美滋滋的代码时间~~~ #include<iostream> #i ...
- 洛谷 P4317 花神的数论题 || bzoj3209
https://www.lydsy.com/JudgeOnline/problem.php?id=3209 https://www.luogu.org/problemnew/show/P4317 设c ...
- [BZOJ3209]花神的数论题 组合数+快速幂
3209: 花神的数论题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2498 Solved: 1129[Submit][Status][Disc ...
- P4317 花神的数论题
题目 洛谷 数学方法学不会%>_<% 做法 爆搜二进制下存在\(i\)位\(1\)的情况,然后快速幂乘起来 My complete code #include<bits/stdc++ ...
- P4317 花神的数论题 dp
这题我一开始就想到数位dp了,其实好像也不是很难,但是自己写不出来...常规套路,f[i][j][k][t],从后往前填数,i位,j代表是否卡着上沿,k是现在有几个1,t是想要有几个.记忆化搜索就ok ...
- Luogu P4317 花神的数论题
也是一道不错的数位DP,考虑先转成二进制后再做 转化一下问题,考虑统计出\([1,n]\)中在二进制下有\(i\)个\(1\)的方案数\(cnt_i\),那么答案显然就是\(\prod i^{cnt_ ...
- P4317 花神的数论题 动态规划?数位DP
思路:数位$DP$ 提交:5次(其实之前A过,但是调了调当初的程序.本次是2次AC的) 题解: 我们分别求出$sum(x)=i$,对于一个$i$,有几个$x$,然后我们就可以快速幂解决. 至于求个数用 ...
- P4317 花神的数论题,关于luogu题解粉兔做法的理解
link 题意 设 \(\text{sum}(i)\) 表示 \(i\) 的二进制表示中 \(1\) 的个数.给出一个正整数 \(N\) ,求 \(\prod_{i=1}^{N}\text{sum}( ...
随机推荐
- 刷题向》关于第一篇状压DP BZOJ1087 (EASY+)
这是本蒟蒻做的第一篇状压DP,有纪念意义. 这道题题目对状压DP十分友善,算是一道模板题. 分析题目,我们发现可以用0和1代表每一个格子的国王情况, 题目所说国王不能相邻放置,那么首先对于每一行是否合 ...
- Ubuntu16.04 ARM 编译 编译器版本和unordered_map map问题
源文件内使用unordered_map时候,例如如下demo #include <unordered_map> void foo(const std::unordered_map<i ...
- 微信WeixinJSBridge API 屏蔽右上角分享等常用方法
WeixinJSBridge这个API有几个功能还是相当有用的,比如: 1.隐藏微信网页右上角的按钮(...按钮):开发者可以用这个功能来禁止当前页面被分享 2.隐藏微信网页底部的导航栏(比如前进后退 ...
- python之连接oracle数据库
环境: windows,python2.7 1.下载cx_Oracle 在windows下不要使用easy_install或者pip,因为这样安装不会同步环境,并报错: distutils.error ...
- ps怎么修改gif动图播放速度
ps怎么修改gif动图播放速度 摘自:https://jingyan.baidu.com/article/7e44095302bbdc2fc0e2efad.html photoshop功能很强大,不仅 ...
- hdu 2206 IP的计算(最全的注意事项)
注意: 1.非法字符(包括空格) 如下都是错的 A.145.124.4 192.168.18 123(用scanf输入的话,则接收的是:192.168.18) 2.'.'有且仅有3个,且不能连续出现, ...
- canvas基础学习笔记
canvas基本用法 1.什么是canvas(画布) <canvas> 是 HTML5 新增的元素,可用于通过使用JavaScript中的脚本来绘制图形,例如,它可以用于绘制图形,创建动 ...
- Linux 的文件系统
Linux 文件属性 文件属性示意图 第一栏代表这个文件的类型与权限(permission): FHS Filesystem Hierarchy Standard(文件系统层次化标准) 1. / (r ...
- .net 特性 Attribute
public sealed class RemarkAttribute : Attribute { public string Remark { get; set; } // 构造函数 public ...
- C# socket请求的名称有效 但是找不到请求的类型的数据
程序以前在xp下运行一直良好,但将安装在win7下面却出现"请求的名称有效 但是找不到请求的类型的数据"错误,程序底层通信是基于socket,时间久了就会出现系统黑屏死机,但并不知 ...