Machine learning

Machine learning is a scientific discipline that explores the construction and study of algorithms that can learn from data. Such algorithms operate by building a model based on inputs and using that to make predictions or decisions, rather than following only explicitly programmed instructions.

机器学习是一个科学规律,探索可以从数据中学习的算法的构造和学习的科学规律。这种算法通过建立一个模型来运作,该模型是基于输入并且使用它来做预测或者决策,而非遵循确切的编程指导。

Machine learning can be considered a subfield of computer science and statistics. It has strong ties to artificial intelligence and optimization, which deliver methods, theory and application domains to the field. Machine learning is employed in a range of computing tasks where designing and programming explicit, rule-based algorithms is infeasible. Example applications include spam filtering, optical character recognition (OCR), search engines and computer vision. Machine learning is sometimes conflated with data mining, although that focuses more on exploratory data analysis. Machine learning and pattern recognition "can be viewed as two facets of the same field."

机器学习可以被认为是计算机科学和统计学的子领域。它与人工智能和最优化有很强的联系,它们为该领域传输了方法、理论和应用域。机器学习应用在广泛的计算任务中,而其中明确的设计和编程、基于规则的算法是不可行的。样例应用包括垃圾邮件过滤、字母识别、搜索引擎和计算机视觉。机器学习有时跟数据挖掘联系在一起,虽然后者更关注数据分析。机器学习和图像识别“可以被视为相同领域的两个方面”.

Read more...

Show new selections

选择的文章

Selected article

A random forest is an ensemble model for classification or regression, that consists of a multitude of decision trees. The predictions of a random forest are averages of the predictions of the individual trees. Random forests correct for decision trees' habit of overfitting to their training set.

随机森林是分类或回归的集合模型,它们包含了许多的决策树。随机森林的预测是各个树的预测值的平均值。随机森林修正了决策树的坏习惯——对训练集的过度拟合。

The algorithm for inducing a random forest was developed by Leo Breiman and Adele Cutler. The method combines Breiman's "bagging" idea and random selection of features: each tree gets to see a bootstrap sample of the training set and a random sample of the features, in order to obtain uncorrelated trees.

引入随机森林的算法是由Leo Breiman和Adele Cutler所开发的。该方法结合了Breiman的“装袋子”观点和特征随机选择:每个树都会看到训练集的自举样本和特征的随机样本,从而获得不相关的树。

SuggestMore articles...

选择的自画像

Selected biography

Michael Irwin Jordan (born 1956) is an American scientist, Professor at the University of California, Berkeley and leading researcher in machine learning and artificial intelligence. He has worked on recurrent neural networks, Bayesian networks, and variational methods, and co-invented latent Dirichlet allocation.

Michael Irwin Jordan(1956年出生)是一个美国科学家,加州大学伯克利分校的教授,并且是在机器学习和人工智能方面的首席专家。他钻研递归神经网络、贝叶斯网络和变分方法,并且合作开发了隐含狄利克雷分布。

SuggestMore biographies...

新闻上

In the news

Portal:Machine learning/News

More current events...
Current events on Wikinews

选择的图片

Selected picture

Credit: User:Alisneaky
The effect of the kernel trick in a
classifier. On the left, a non-linear decision boundary has been learned by a
"kernelized" classifier. This simulates the effect of a feature map φ, that transforms the problem space into one
where the decision boundary is linear (right).

内核方法(核函数)的效果是一个分类器。左侧,一个非线性决策边界由一个“核化”分类器来进行学习。它模拟了一个特征映射φ效果,它将问题空间变换到决策边界为线性的空间。

SuggestMore
pictures...

你知道吗?

Did you know?

  • ... that the kernel perceptron was the first learning algorithm to employ the kernel trick, already in
    1964?核感知器是第一个应用核函数的学习算法,在1964年?
  • ... that AltaVista was the first web search engine to employ machine-learned ranking of its search results?AltaVista是第一个应用机器学习对搜索结果进行评分的网络搜索引擎?
  • ... that the group method
    of data handling
    ,
    invented in the USSR, was one of the first algorithms capable of training deep neural networks (ca. 1971)?数据处理的组合方法,在苏联发明的,是第一类能够训练深度神经网络的算法之一(1971年)?

ArchiveStart a new article

目录

Categories

Machine learning机器学习

Applied machine learning应用机器学习

Artificial neural networks人工神经网络

Bayesian networks贝叶斯网络

Classification algorithms分类算法

Cluster analysis聚类分析

Computational learning theory计算学习理论

Artificial intelligence conferences人工智能会议

Signal processing conferences信号处理会议

Data mining and machine learning software数据挖掘和机器学习软件

Datasets in machine learning机器学习数据集

Dimension reduction维度下降

Ensemble learning集成学习

Evolutionary algorithms进化算法

Genetic programming遗传算法

Inductive logic programming归纳逻辑程序

Kernel methods for machine learning机器学习的核方法

Latent variable models隐含变量模型

Learning in computer vision机器视觉的学习

Log-linear models对数线性模型

Loss functions损失函数

Machine learning algorithms机器学习算法

Machine learning portal机器学习门户

Machine learning task机器学习任务

Markov models马尔科夫模型

Machine learning researchers机器学习研究者

Semisupervised learning半监督学习

Statistical natural language processing统计学自然语言处理

Structured prediction结构化预测

Supervised learning监督学习

Support vector machines支持向量机

Unsupervised learning非监督学习

讨论主题热点

Topics

Portal:Machine learning/Topics

Related portals相关门户

Artificial
intelligence
人工智能

Computer science计算科学

Information
technology
信息技术

Robotics机器人

Statistics统计学

Technology科技

维基项目

WikiProjects

要做的事(公开任务)

Things to do

Portal:Machine learning/Opentask

维基媒介

Wikimedia

Portal:Machine learning/Wikimedia

Purge server cache

<img
src="//en.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1"
alt="" title="" width="1" height="1"
style="border: none; position: absolute;" />

Retrieved from "https://en.wikipedia.org/w/index.php?title=Portal:Machine_learning&oldid=676364806"

Categories:

https://en.wikipedia.org/wiki/Portal:Machine_learning

Portal:Machine learning机器学习:门户的更多相关文章

  1. [原创]Machine Learning/机器学习 文章合集

    转载请注明出处:https://www.codelast.com/ ➤ 用人话解释机器学习中的Logistic Regression(逻辑回归) ➤ 如何防止softmax函数上溢出(overflow ...

  2. machine learning----->Amazon Machine Learning机器学习平台

    参考资料: 1.如何使用Amazon Machine Learning平台构建你的机器学习预测模型 2.

  3. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议

    Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...

  4. Machine learning | 机器学习中的范数正则化

    目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏 ...

  5. Machine Learning:机器学习算法

    原文链接:https://riboseyim.github.io/2018/02/10/Machine-Learning-Algorithms/ 摘要 机器学习算法分类:监督学习.半监督学习.无监督学 ...

  6. [Machine Learning] 机器学习常见算法分类汇总

    声明:本篇博文根据http://www.ctocio.com/hotnews/15919.html整理,原作者张萌,尊重原创. 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多 ...

  7. When Cyber Security Meets Machine Learning 机器学习 安全分析 对于安全领域的总结很有用 看未来演进方向

    链接:http://ucys.ugr.es/jnic2016/docs/MachineLearning_LiorRokachJNIC2016.pdf https://people.eecs.berke ...

  8. 【Machine Learning·机器学习】决策树之ID3算法(Iterative Dichotomiser 3)

    目录 1.什么是决策树 2.如何构造一棵决策树? 2.1.基本方法 2.2.评价标准是什么/如何量化评价一个特征的好坏? 2.3.信息熵.信息增益的计算 2.4.决策树构建方法 3.算法总结 @ 1. ...

  9. Data Leakage in Machine Learning 机器学习训练中的数据泄漏

    refer to:  https://www.kaggle.com/dansbecker/data-leakage There are two main types of leakage: Leaky ...

随机推荐

  1. js判断客户端是pc还是手机

    function IsPC() { var userAgentInfo = navigator.userAgent; var Agents = ["Android", " ...

  2. java.lang.NoClassDefFoundError: org/apache/commons/io/output/DeferredFileOutputStream异常解决方法

    使用Tomcat部署Servlet程序时,单步调试跟踪到: List<FileItem> itemList = sfu.parseRequest(request); 总是会报错:Java. ...

  3. 使用BasicDataSource连接池连接oracle数据库报错ORA-12505

    先看连接池配置: <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" ...

  4. git 远程仓 和 本地仓 记录

    一.远程仓添加信息后 ,本地环境修改信息后,上传 远程仓 coding=utf-8 本地仓 coding=utf-8 本地仓同步后 会提示存在冲突: (其中 HEAD 是当前非支的意思,可以理解为当前 ...

  5. CIDR地址分类

    CIDR(Classless Inter Domain Routing)改进了传统的IPv4地址分类.传统的IP分类将IP地址直接对应为默认的分类,从而将Internet分割为网络.CIDR在路由表中 ...

  6. zufeoj 数值排序(简单题)

    数值排序 时间限制: 1 Sec  内存限制: 128 MB提交: 186  解决: 45[提交][状态][讨论版] 题目描述 输入一串数字,把这串数字中的‘0’都看成空格,那么就得到一行用空格分割的 ...

  7. redirect uri 参数错误 怎么办

    这种情况,多数是因为请求地址不合法所致. 去公众号中添加合法的地址. 这种地址需要满足一些条件. 设置地址 满足的条件 保证可以访问到安全文件 如果访问不到的话,将无法保存 这里是文件存放位置 经过这 ...

  8. MVC中Ajax post 和Ajax Get——提交对象Model

    HTTP 请求:GET vs. POST两种在客户端和服务器端进行请求-响应的常用方法是:GET 和 POST.GET - 从指定的资源请求数据POST - 向指定的资源提交要处理的数据GET 基本上 ...

  9. 使用airmon-ng工具开启监听模式

    使用ifconfig命令查看活动的网络接口 可以看出网卡已经激活了,然后将网卡设置为混杂模式 root@sch01ar:~# airmon-ng start wlan0 用ifconfig查看网卡是否 ...

  10. Deep Learning 学习笔记(5):Regularization 规则化

    过拟合(overfitting): 实际操作过程中,无论是线性回归还是逻辑回归,其假设函数h(x)都是人为设定的(尽管可以通过实验选择最优). 这样子就可能出线“欠拟合”或者“过拟合”现象. 所谓过拟 ...