【BZOJ2820】YY的GCD [莫比乌斯反演]
YY的GCD
Time Limit: 10 Sec Memory Limit: 512 MB
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
10 10
100 100
Sample Output
2791
HINT
T = 10000
N, M <= 10000000
Solution
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ; int T;
int n,m;
bool isp[ONE];
int prime[],p_num;
int miu[ONE],sum[ONE];
s64 Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getmiu(int MaxN)
{
miu[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
prime[++p_num] = i, miu[i] = -;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i % prime[j] == )
{
miu[i * prime[j]] = ;
break;
}
miu[i * prime[j]] = -miu[i];
}
}
for(int j=; j<=p_num; j++)
for(int i=; i*prime[j]<=MaxN; i++)
sum[i * prime[j]] += miu[i];
for(int i=; i<=MaxN;i++)
sum[i] += sum[i-];
} void Solve()
{
n=get(); m=get();
if(n > m) swap(n,m);
Ans = ;
for(int i=, j=; i<=n; i=j+)
{
j = min(n/(n/i), m/(m/i));
Ans += (s64) (n/i) * (m/i) * (sum[j] - sum[i-]);
}
printf("%lld\n",Ans);
} int main()
{
Getmiu(ONE-);
T=get();
while(T--)
Solve();
}
【BZOJ2820】YY的GCD [莫比乌斯反演]的更多相关文章
- BZOJ2820:YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- BZOJ2820 YY的GCD 莫比乌斯+系数前缀和
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)
题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- 雷哥带你走进Javascript
javascript复习笔记--------------------------------------------1.概念2.面向对象思想3.作用认识4.引入方式5.执行顺序 变量 1)声明方式 x ...
- 纯js生成QRCode
纯js,不依赖jquery,非常好用,废话不多说,直接上代码! <!DOCTYPE html> <html> <head> <meta charset=&qu ...
- 用gradle编译任意结构的Android项目
## 需求 * 继续用`Eclipse`项目的结构,但是使用`gradle`编译,或者说任意的项目结构进行编译. ## 解决方案 1. Android studio的项目结构 1. Android S ...
- Python3 使用 logging.basicConfig() 配置输出日志中的中文乱码解决办法
在源码中修改encoding='utf-8',因为 logging.basicConfig() 配置时实际上是用到了4大组件,只不过给了默认值而已,如果不知道怎么找到源码,告诉你们个快捷键,选中你lo ...
- windows本地连接腾讯云的mysql服务器
由于最近数据库需要用上Navicat作为数据库,但是我的mysql装在腾讯云的Ubuntu上,因此需要做些配置开放端口,和监听端口,因此略显麻烦,这里记录一下连接的具体步骤,方便以后又得装(flag) ...
- LeetCode - 70. Climbing Stairs(0ms)
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- git instaweb 500 error
在arch 系统中安装perl-cgi包. 在deiban中参考:https://git-scm.com/book/zh/v2/%E6%9C%8D%E5%8A%A1%E5%99%A8%E4%B8%8A ...
- PyQt5图像全屏显示
Windows装这个:https://pypi.python.org/pypi/PyQt5Ubuntu输入这个:sudo apt-get install python3-pyqt5 或者直接输入:pi ...
- URAL 1936 Roshambo(求期望)
Description Bootstrap: Wondering how it's played? Will: It's a game of deception. But your bet inclu ...
- java long值转成时间格式
/** * 将long值转换为以小时计算的格式 * @param mss * @return */ public static String formatLongTime(long mss) { St ...