存到文件:

with open(filename, 'wb') as fd:
for chunk in r.iter_content(chunk_size):
fd.write(chunk)

使用 Response.iter_content 将会处理大量你直接使用 Response.raw 不得不处理的。 当流下载时,上面是优先推荐的获取内容方式。

定制请求头

如果你想为请求添加 HTTP 头部,只要简单地传递一个 dict 给 headers 参数就可以了。

例如,在前一个示例中我们没有指定 content-type:

>>> url = 'https://api.github.com/some/endpoint'
>>> headers = {'user-agent': 'my-app/0.0.1'} >>> r = requests.get(url, headers=headers)

注意: 定制 header 的优先级低于某些特定的信息源,例如:

  • 如果在 .netrc 中设置了用户认证信息,使用 headers= 设置的授权就不会生效。而如果设置了auth= 参数,``.netrc`` 的设置就无效了。
  • 如果被重定向到别的主机,授权 header 就会被删除。
  • 代理授权 header 会被 URL 中提供的代理身份覆盖掉。
  • 在我们能判断内容长度的情况下,header 的 Content-Length 会被改写。

更进一步讲,Requests 不会基于定制 header 的具体情况改变自己的行为。只不过在最后的请求中,所有的 header 信息都会被传递进去。

注意: 所有的 header 值必须是 string、bytestring 或者 unicode。尽管传递 unicode header 也是允许的,但不建议这样做。

更加复杂的 POST 请求

通常,你想要发送一些编码为表单形式的数据——非常像一个 HTML 表单。要实现这个,只需简单地传递一个字典给 data 参数。你的数据字典在发出请求时会自动编码为表单形式:

>>> payload = {'key1': 'value1', 'key2': 'value2'}

>>> r = requests.post("http://httpbin.org/post", data=payload)
>>> print(r.text)
{
...
"form": {
"key2": "value2",
"key1": "value1"
},
...
}

很多时候你想要发送的数据并非编码为表单形式的。如果你传递一个 string 而不是一个 dict,那么数据会被直接发布出去。

例如,Github API v3 接受编码为 JSON 的 POST/PATCH 数据:

>>> import json

>>> url = 'https://api.github.com/some/endpoint'
>>> payload = {'some': 'data'} >>> r = requests.post(url, data=json.dumps(payload))

此处除了可以自行对 dict 进行编码,你还可以使用 json 参数直接传递,然后它就会被自动编码。这是 2.4.2 版的新加功能:

>>> url = 'https://api.github.com/some/endpoint'
>>> payload = {'some': 'data'} >>> r = requests.post(url, json=payload)

POST一个多部分编码(Multipart-Encoded)的文件

Requests 使得上传多部分编码文件变得很简单:

>>> url = 'http://httpbin.org/post'
>>> files = {'file': open('report.xls', 'rb')} >>> r = requests.post(url, files=files)
>>> r.text
{
...
"files": {
"file": "<censored...binary...data>"
},
...
}

你可以显式地设置文件名,文件类型和请求头:

>>> url = 'http://httpbin.org/post'
>>> files = {'file': ('report.xls', open('report.xls', 'rb'), 'application/vnd.ms-excel', {'Expires': '0'})} >>> r = requests.post(url, files=files)
>>> r.text
{
...
"files": {
"file": "<censored...binary...data>"
},
...
}

如果你想,你也可以发送作为文件来接收的字符串:

>>> url = 'http://httpbin.org/post'
>>> files = {'file': ('report.csv', 'some,data,to,send\nanother,row,to,send\n')} >>> r = requests.post(url, files=files)
>>> r.text
{
...
"files": {
"file": "some,data,to,send\\nanother,row,to,send\\n"
},
...
}

如果你发送一个非常大的文件作为 multipart/form-data 请求,你可能希望将请求做成数据流。默认下 requests 不支持, 但有个第三方包 requests-toolbelt 是支持的。你可以阅读 toolbelt 文档 来了解使用方法。

在一个请求中发送多文件参考 高级用法 一节。

警告

我们强烈建议你用二进制模式(binary mode)打开文件。这是因为 Requests 可能会试图为你提供 Content-Length header,在它这样做的时候,这个值会被设为文件的字节数(bytes)。如果用文本模式(text mode)打开文件,就可能会发生错误。

响应状态码

我们可以检测响应状态码:

>>> r = requests.get('http://httpbin.org/get')
>>> r.status_code
200

为方便引用,Requests还附带了一个内置的状态码查询对象:

>>> r.status_code == requests.codes.ok
True

如果发送了一个错误请求(一个 4XX 客户端错误,或者 5XX 服务器错误响应),我们可以通过Response.raise_for_status() 来抛出异常:

>>> bad_r = requests.get('http://httpbin.org/status/404')
>>> bad_r.status_code
404 >>> bad_r.raise_for_status()
Traceback (most recent call last):
File "requests/models.py", line 832, in raise_for_status
raise http_error
requests.exceptions.HTTPError: 404 Client Error

但是,由于我们的例子中 r 的 status_code 是 200 ,当我们调用 raise_for_status() 时,得到的是:

>>> r.raise_for_status()
None

一切都挺和谐哈。

响应头

我们可以查看以一个 Python 字典形式展示的服务器响应头:

>>> r.headers
{
'content-encoding': 'gzip',
'transfer-encoding': 'chunked',
'connection': 'close',
'server': 'nginx/1.0.4',
'x-runtime': '148ms',
'etag': '"e1ca502697e5c9317743dc078f67693f"',
'content-type': 'application/json'
}

但是这个字典比较特殊:它是仅为 HTTP 头部而生的。根据 RFC 2616, HTTP 头部是大小写不敏感的。

因此,我们可以使用任意大写形式来访问这些响应头字段:

>>> r.headers['Content-Type']
'application/json' >>> r.headers.get('content-type')
'application/json'

它还有一个特殊点,那就是服务器可以多次接受同一 header,每次都使用不同的值。但 Requests 会将它们合并,这样它们就可以用一个映射来表示出来,参见 RFC 7230:

A recipient MAY combine multiple header fields with the same field name into one "field-name: field-value" pair, without changing the semantics of the message, by appending each subsequent field value to the combined field value in order, separated by a comma.

接收者可以合并多个相同名称的 header 栏位,把它们合为一个 "field-name: field-value" 配对,将每个后续的栏位值依次追加到合并的栏位值中,用逗号隔开即可,这样做不会改变信息的语义。

Cookie

如果某个响应中包含一些 cookie,你可以快速访问它们:

>>> url = 'http://example.com/some/cookie/setting/url'
>>> r = requests.get(url) >>> r.cookies['example_cookie_name']
'example_cookie_value'

要想发送你的cookies到服务器,可以使用 cookies 参数:

>>> url = 'http://httpbin.org/cookies'
>>> cookies = dict(cookies_are='working') >>> r = requests.get(url, cookies=cookies)
>>> r.text
'{"cookies": {"cookies_are": "working"}}'

重定向与请求历史

默认情况下,除了 HEAD, Requests 会自动处理所有重定向。

可以使用响应对象的 history 方法来追踪重定向。

Response.history 是一个 Response 对象的列表,为了完成请求而创建了这些对象。这个对象列表按照从最老到最近的请求进行排序。

例如,Github 将所有的 HTTP 请求重定向到 HTTPS:

>>> r = requests.get('http://github.com')

>>> r.url
'https://github.com/' >>> r.status_code
200 >>> r.history
[<Response [301]>]

如果你使用的是GET、OPTIONS、POST、PUT、PATCH 或者 DELETE,那么你可以通过allow_redirects 参数禁用重定向处理:

>>> r = requests.get('http://github.com', allow_redirects=False)
>>> r.status_code
301
>>> r.history
[]

如果你使用了 HEAD,你也可以启用重定向:

>>> r = requests.head('http://github.com', allow_redirects=True)
>>> r.url
'https://github.com/'
>>> r.history
[<Response [301]>]

超时

你可以告诉 requests 在经过以 timeout 参数设定的秒数时间之后停止等待响应:

>>> requests.get('http://github.com', timeout=0.001)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
requests.exceptions.Timeout: HTTPConnectionPool(host='github.com', port=80): Request timed out. (timeout=0.001)

注意

timeout 仅对连接过程有效,与响应体的下载无关。 timeout 并不是整个下载响应的时间限制,而是如果服务器在 timeout 秒内没有应答,将会引发一个异常(更精确地说,是在timeout 秒内没有从基础套接字上接收到任何字节的数据时)

错误与异常

遇到网络问题(如:DNS 查询失败、拒绝连接等)时,Requests 会抛出一个 ConnectionError 异常。

如果 HTTP 请求返回了不成功的状态码, Response.raise_for_status() 会抛出一个 HTTPError 异常。

若请求超时,则抛出一个 Timeout 异常。

若请求超过了设定的最大重定向次数,则会抛出一个 TooManyRedirects 异常。

所有Requests显式抛出的异常都继承自 requests.exceptions.RequestException 。

关于强大的requests的更多相关文章

  1. python利用requests库模拟post请求时json的使用

    我们都见识过requests库在静态网页的爬取上展现的威力,我们日常见得最多的为get和post请求,他们最大的区别在于安全性上: 1.GET是通过URL方式请求,可以直接看到,明文传输. 2.POS ...

  2. python+pytest接口自动化(4)-requests发送get请求

    python中用于请求http接口的有自带的urllib和第三方库requests,但 urllib 写法稍微有点繁琐,所以在进行接口自动化测试过程中,一般使用更为简洁且功能强大的 requests ...

  3. python3里的Urllib库

    首先Urllib是python内置的HTTP请求库. 包括以下模块: urllib.request 请求模块: urllib.error 异常处理模块: urllib.parse url解析模块: u ...

  4. python网络爬虫-静态网页抓取(四)

    静态网页抓取 在网站设计中,纯HTML格式的网页通常被称之为静态网页,在网络爬虫中静态网页的数据比较容易抓取,因为说有的数据都呈现在网页的HTML代码中.相对而言使用Ajax动态加载的玩个的数据不一定 ...

  5. Python爬虫小白入门(二)requests库

    一.前言 为什么要先说Requests库呢,因为这是个功能很强大的网络请求库,可以实现跟浏览器一样发送各种HTTP请求来获取网站的数据.网络上的模块.库.包指的都是同一种东西,所以后文中可能会在不同地 ...

  6. 爬虫requests模块 2

    会话对象¶ 会话对象让你能够跨请求保持某些参数.它也会在同一个 Session 实例发出的所有请求之间保持 cookie, 期间使用 urllib3 的 connection pooling 功能.所 ...

  7. python requests模块使用

    python的网络编程能力十分强大,其中python中的requests库宣言:HTTP for Humans (给人用的 HTTP 库) 在网络编程中,最基本的任务包含: 发送请求 登录 获取数据 ...

  8. requests的安装与简单运用

    requests是python的一个HTTP客户端库,跟urllib,urllib2类似,那为什么要用requests而不用urllib2呢?官方文档中是这样说明的: python的标准库urllib ...

  9. Nikto是一款Web安全扫描工具,可以扫描指定主机的web类型,主机名,特定目录,cookie,特定CGI漏洞,XSS漏洞,SQL注入漏洞等,非常强大滴说。。。

    Nikto是一款Web安全扫描工具,可以扫描指定主机的web类型,主机名,特定目录,cookie,特定CGI漏洞,XSS漏洞,SQL注入漏洞等,非常强大滴说... root@xi4ojin:~# cd ...

随机推荐

  1. 错误名称:Uncaught SyntaxError: Unexpected identifier

    控制台输出: 1.谷歌:Uncaught SyntaxError: Unexpected identifier 2.火狐:SyntaxError: missing ] after element li ...

  2. IronPython for ASP.NET 部署注意事项

    用 IronPython for ASP.NET 开发的网站,在部署时,除了发布 bin 目录下的 IronPython.dll, IronMath.dll, Microsoft.Web.IronPy ...

  3. java多线程编程核心技术——第三章总结

    第一节等待/通知机制 1.1不使用等待/通知机制实现线程间的通讯 1.2什么是等待/通知机制 1.3等待/通知机制的实现 1.4方法wait()锁释放与notify()锁不释放 1.5当interru ...

  4. linux下dns设置详解

    DNS就是Domain Name System,它能够把形如www.21php.com这样的域名转换为211.152.50.35这样的IP地址;没有DNS,浏览21php.com这个网站时,就必须用2 ...

  5. 启动新内核出现:No filesystem could mount root, tried: ext3 ext2 cramfs vfa

    转载请注明出处:http://blog.csdn.net/qq_26093511/article/details/51841791 下载新编译的内核出现:No filesystem could mou ...

  6. Mach系统

    ——杂言:最近升级了把山狮升级到了10.9mavericks,比较抓我注意力的就是新的活动监视器.新的监视器里对统计分类很严,双击某一进程,即可跳出一个详情对话框.其中里面就有记录着Mach相关的信息 ...

  7. sklearn有关参数

    from sklearn import datasets from sklearn.linear_model import LinearRegression import matplotlib.pyp ...

  8. js中的cookie的设置获取和检查

    设置cookiefunction setCookie(cname,cvalue,exdays) { var d = new Date(); d.setTime(d.getTime()+(exdays* ...

  9. C#和Python 图片和base64的互转

    C#实例代码: /// <summary> /// 图片转base64 /// </summary> /// <param name="bmp"> ...

  10. 用python实现杨辉三角

    def yanghui(lines): currentlst,lastlst,n=[],[],1 if lines<1: return while n<=lines: lastlst=cu ...