gym 101889I Imperial roads 最小生成树+LCA
题意:
给出一幅无向带权图,q次询问,每次询问都求一棵包含给出的边的最小生成树。
思路:
首先求出最小生成树(kruskal),如果查询的边在最小生成树上,肯定是直接输出最小生成树,如果不在树上,那么这条必须连的边会和生成树形成一个环,我们就要去掉这个环上最大的一条边,就得到了答案(最小生成树是通过局部最优解得到全局最优解的,所以如果这样做,得到的是符合要求的最优解)。
赛中队友提出一个问题,如果有两棵不同的最小生成树那这个做法不就错了吗,但其实如果有两棵最小生成树,这两棵树 相同权值的边的条数是一样的,是同分异构,所以做法还是正确的。
而求环上的最大值,其实是求树上的最大值,所以在做kruskal的时候建立一幅新图,然后用lca求最大值。注意最大值的更新,很容易错。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<cstring>
#include<queue>
#include<stack>
#include<cmath>
#define CLR(a,b) memset(a,b,sizeof(a))
#define mkp(a,b) make_pair(a,b)
using namespace std;
const int maxn = ;
typedef long long ll;
int n, m, head[maxn], tot, vis[maxn],fa[maxn],deep[maxn],t,f[maxn][],ma[maxn][];
int ans;
struct edge {
int to, w, Next;
edge() {}
edge(int to, int Next, int w) :to(to), Next(Next), w(w) {}
}a[maxn * ];
map<pair<int, int >, int >mp;
struct node {
int u, v, w;
node(int u, int v, int w) :u(u), v(v), w(w) {}
};
vector<node>g;
void addv(int u, int v, int w) {
a[++tot] = { v,head[u],w };
head[u] = tot;
}
void init() {
CLR(head, -);
for (int i = ; i <= n; i++)fa[i] = i;
tot = ;
}
int find(int x)
{
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
inline void baba(int x, int y)
{
int fx = find(x), fy = find(y);
fa[fx] = fy;
}
bool cmp(node &a, node &b)
{
return a.w < b.w;
}
inline void kruskal() {
sort(g.begin(), g.end(), cmp);
for (int i = ; i < m; i++)
{
int x = find(g[i].u);
int y = find(g[i].v);
if (x == y)continue;
addv(g[i].u, g[i].v, g[i].w);
addv(g[i].v, g[i].u, g[i].w);
baba(x, y);
ans += g[i].w;
}
}
inline void bfs() {
queue<int >q;
q.push();
deep[] = ;
while (!q.empty())
{
int x = q.front();
q.pop();
for (int i = head[x]; i != -; i = a[i].Next)
{
int y = a[i].to;
if (deep[y])continue;
deep[y] = deep[x] + ;
f[y][] = x;
ma[y][] = a[i].w;
for (int j = ; j <= t; j++)
{
f[y][j] = f[f[y][j - ]][j - ];
ma[y][j] = max(ma[y][j-], ma[f[y][j - ]][j - ]);
}
q.push(y); }
}
}
int lca(int x, int y)
{
int maxx = ;
if (deep[x] > deep[y])swap(x, y);
for (int i = t; i >= ; i--)
{
if (deep[f[y][i]] >= deep[x]) {
maxx = max(maxx, ma[y][i]);
y = f[y][i];
}
}
if (x == y)return maxx;
for (int i = t; i >= ; i--)
{
if (f[x][i] != f[y][i]) {
maxx = max(maxx, ma[x][i]);
maxx = max(maxx, ma[y][i]);
x = f[x][i], y = f[y][i];
}
}
//printf("debug\n");
maxx=max(maxx,ma[x][]);
maxx=max(maxx,ma[y][]);
return maxx;
}
int main() {
scanf("%d%d", &n, &m);
init();
for(int i=;i<=m;i++)
{
int u, v;
int w;
scanf("%d%d%d", &u, &v, &w);
if (u > v)swap(u, v);
mp[make_pair(u, v)] = w;
g.push_back(node{ u,v,w });
}
kruskal();
t = (int)(log(n) / log()) + ;
bfs();
// for (int i = 1; i <= n; i++)
// {
// printf("i:%d deep:%d\n", i, deep[i]);
// }
int q;
cin >> q;
while (q--)
{
int u, v;
scanf("%d%d", &u, &v);
if (u > v)swap(u, v);
// printf("u:%d v:%d\n", u, v);
// printf("ans:%d lca:%d mp:%d\n",ans,lca(u,v),mp[make_pair(u,v)]);
printf("%d\n", ans - lca(u, v)+mp[make_pair(u,v)]);
}
} /* 5 7
1 2 6
1 3 4
3 4 2
1 5 7
4 5 4
2 4 1
3 5 3
1
4 5 */
gym 101889I Imperial roads 最小生成树+LCA的更多相关文章
- hdu Constructing Roads (最小生成树)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1102 /************************************************* ...
- 【最小生成树+LCA】Imperial roads
http://codeforces.com/gym/101889 I 先跑一遍最小生成树,把经过的边和答案记录下来 对于每个询问的边,显然如果处于MST中,答案不变 如果不在MST中,假设这条边连上了 ...
- GYM 101889I(mst+lca)
最小生成树上倍增询问裸的. const int maxn = 2e5 + 5; int n, m, q; //图 struct Edge { int u, v; ll cost; bool opera ...
- Gym - 101173H Hangar Hurdles (kruskal重构树/最小生成树+LCA)
题目大意:给出一个n*n的矩阵,有一些点是障碍,给出Q组询问,每组询问求两点间能通过的最大正方形宽度. 首先需要求出以每个点(i,j)为中心的最大正方形宽度mxl[i][j],可以用二维前缀和+二分或 ...
- poj 1251 Jungle Roads (最小生成树)
poj 1251 Jungle Roads (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...
- bzoj3732: Network--kruskal最小生成树+LCA
这是一道写起来比较顺手的题目 没有各种奇怪的细节,基本就是Kruskal和倍增LCA的模板.. 题目大意:对于一个无向带权图,询问两点之间一条路,使得这条路上的最长边最小,输出最小最长边的的值 那么既 ...
- hdu 1301 Jungle Roads 最小生成树
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1301 The Head Elder of the tropical island of Lagrish ...
- HDU 1102 Constructing Roads (最小生成树)
最小生成树模板(嗯……在kuangbin模板里面抄的……) 最小生成树(prim) /** Prim求MST * 耗费矩阵cost[][],标号从0开始,0~n-1 * 返回最小生成树的权值,返回-1 ...
- hdu Jungle Roads(最小生成树)
Problem Description The Head Elder of the tropical island of Lagrishan has a problem. A burst of for ...
随机推荐
- 修改oracle xe的8080端口
1.用sys管理员身份登录,利用dbms_xdb修改端口设置 SQL> -- Change the HTTP/WEBDAV port from 8080 to 8081 SQL> call ...
- JAVA input/output 流层次关系图
在java中,input和output流种类繁多,那么它们之间是否有关系呢?答案是肯定的,其中使用到了设计模式,装饰模式 下图来自于HEAD FIRST 设计模式 装饰模式一章 下图来自网络博客:ht ...
- day70-oracle 13-数据字典
实际上数据字典它就是表.这种表比较特殊,给它取个名字叫做数据字典.既然是表的话,它就是要存数据的.它存的是这些数据:用户有哪些权限,用户创建了哪些表,用户能够访问哪些表,这种信息跟员工表.部门表没有关 ...
- Python中for else注意事项
假设有如下代码: for i in range(10): if i == 5: print 'found it! i = %s' % i else: print 'not found it ...' ...
- Win 7系统优化/设置小工具 (脚本)
Win7系统优化脚本 用了多年win7,用的过程中,发现了一些问题,关于系统基本的优化,和个人的使用习惯设置等等,做成了一个脚本,可以一键设置win7的系统设置,比如更新提醒,关闭防火墙提示,烦人的系 ...
- Git 之 修复bug
前面介绍了Git版本控制,为我们省去了很多不必要的麻烦. 回滚 有没有想过,在我们开发过程中,修改需要是常有的事,如果我们现在不想要这个功能了,那么如何回到之前的版本呢?回滚,回到上一个版本. 那如果 ...
- 查看类属性和方法---structure
- Google B4网络阅读记录(翻译)
3.设计 这一章我们描述软件定义广域网架构的细节. 3.1.概述 我们的软件定义网络从逻辑上可以看做三层,如图所示, B4服务于多个广域网节点,每个节点都有很多服务器集群.在每个B4节点内,交换机硬件 ...
- 遗传算法介绍并附上Matlab代码
摘自http://www.cnblogs.com/hxsyl/p/5240905.html 1.遗传算法介绍 遗传算法,模拟达尔文进化论的自然选择和遗产学机理的生物进化构成的计算模型,一种不断选择优良 ...
- serializeArray()和.serialize()的区别、联系
serializeArray()和.serialize()的区别.联系 <form id='addForm' action='UserAdd.action' type='post'> ...