Luogu3348

BZOJ4573

LOJ2092

题解

对于每个\(1\)操作建一个虚点,以后的\(0\)操作都连在最近建好的虚点上。这样每次整体嫁接的时候,直接把这个虚点断掉它原来的父亲,再\(link\)过去就可以了

求在\(x\)位置的两点之间距离 , 只要之前的换点加点操作完成 , 就可以计算 , 而且也要马上计算 , 之后树的形态就又要变了 , 这样保证了复杂度

关于代码 : 先按思路把离线的事件处理出来

然后发现这种离线的利用虚点的转移只能用\(LCT\)维护

注意 : 只有实点才算\(size\) , 并统计到路径长度中去 , 利用的虚点不算\(size\)

还有\(LCT\)上不\(makeroot\)时求\(LCA\)的求法

注释重构于19.3.29

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define Debug(x) cout<<#x<<"="<<x<<endl
using namespace std;
typedef long long LL;
const int INF=1e9+7;
inline LL read(){
register LL x=0,f=1;register char c=getchar();
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar();
return f*x;
} const int MAXN=3e5+5;
const int MAXM=2e5+5; struct Query{
int pos,id,x,y;
inline friend bool operator<(Query a,Query b){
if(a.pos==b.pos) return a.id<b.id;
return a.pos<b.pos;
}
}q[MAXM];
int Qcnt,Acnt; int at[MAXN],L[MAXN],R[MAXN],ans[MAXN];
int n,m,p,aux,real; namespace LCT{
int ch[MAXN][2],fa[MAXN],size[MAXN],val[MAXN];
int st[MAXN],top;
#define ls (ch[rt][0])
#define rs (ch[rt][1])
inline bool chk(int x){return ch[fa[x]][1]==x;}
inline bool isnotroot(int x){return ch[fa[x]][0]==x||ch[fa[x]][1]==x;}
inline void pushup(int rt){size[rt]=size[ls]+size[rs]+val[rt];}//只要算实点
inline void rotate(int x){
int y=fa[x],z=fa[y],k=chk(x),w=ch[x][k^1];
ch[y][k]=w,fa[w]=y;
if(isnotroot(y)) ch[z][chk(y)]=x; fa[x]=z;
ch[x][k^1]=y,fa[y]=x;
pushup(y);pushup(x);
}
inline void splay(int x){
while(isnotroot(x)){
int y=fa[x];
if(isnotroot(y)){
if(chk(x)==chk(y)) rotate(y);
else rotate(x);
}
rotate(x);
}
}
inline int access(int x){
int y=0;
for(;x;x=fa[y=x])
splay(x),ch[x][1]=y,pushup(x);
return y;//access(y)时最后跳的虚边的父亲就是lca,即最后的y
}
inline void link(int x,int y){
splay(x);//不能makeroot,只能splay
fa[x]=y;//只有根节点才能连边
}
inline void cut(int x){//和它上面的点断开
access(x);splay(x);
ch[x][0]=fa[ch[x][0]]=0;
pushup(x);
}
#undef ls
#undef rs
}using namespace LCT; int main(){
n=read(),m=read();
real=1,size[1]=1,val[1]=1,at[1]=1,L[1]=1,R[1]=n;//初始时只有1一个实点
link(p=aux=2,1);
for(int i=1;i<=m;i++){
int op=read(),x=read(),y=read();
if(op==0){
link(at[++real]=++p,aux);///新建一个点连到虚点上去,并记录第real个实点在哪(是所有编号中的第几个)
size[p]=1,val[p]=1;//更新val[]!!! (注意只有这样的实点才有权值)
L[real]=x,R[real]=y;
}
if(op==1){
int t=read();
x=max(x,L[t]),y=min(y,R[t]);//有些树还没这个点
if(x>y) continue;
link(++p,aux);///新建一个点连到虚点上去
//size[p]=0,val[p]=0; 虚点没有val[],不算进路径上有size[]个点
//先按思路把离线的事件处理出来
q[++Qcnt]=(Query){x,i-m,p,at[t]};///到了x就把虚点换成这个 -m是为了使换点操作在加点操作前面.
q[++Qcnt]=(Query){y+1,i-m,p,aux};//到了y+1就换回去
aux=p;//更换虚点了!!! 之后的点要放到新点的下面
}
if(op==2) q[++Qcnt]=(Query){x,++Acnt,at[y],at[read()]};//在x位置的两点之间距离,只要之前的换点加点操作完成,就可以计算,而且也要马上计算,之后树的形态就又要变了
}
sort(q+1,q+Qcnt+1);
for(int i=1;i<=Qcnt;i++){
if(q[i].id>0){
int x=q[i].x,y=q[i].y,&sum=ans[q[i].id];
//由于根节点始终为1,不能makeroot后求路径,所以要用到lca.本题中步数=size[x]+size[y]-2*size[lca].
access(x);splay(x);sum+=size[x];
int lca=access(y);splay(y);sum+=size[y];
access(lca);splay(lca);sum-=size[lca]*2;//打起来真的舒服
}
else{ // 这种离线的利用虚点的转移只能用LCT维护
cut(q[i].x);//和它上面的点断开
link(q[i].x,q[i].y);//然后连到新的点上去
}
}
for(int i=1;i<=Acnt;i++)
printf("%d\n",ans[i]);
}

P3348 [ZJOI2016]大森林(LCT)的更多相关文章

  1. 洛谷P3348 [ZJOI2016]大森林 [LCT]

    传送门 刷了那么久水题之后终于有一题可以来写写博客了. 但是这题太神仙了我还没完全弄懂-- upd:写完博客之后似乎懂了. 思路 首先很容易想到\(O(n^2\log n)\)乘上\(O(\frac{ ...

  2. [ZJOI2016]大森林(LCT)

    题目描述 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. 小Y掌握了一种 ...

  3. P3348 [ZJOI2016]大森林

    \(\color{#0066ff}{ 题目描述 }\) 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树都有一个特殊的节点,我们称之为生长节点, ...

  4. 洛谷P3348 [ZJOI2016]大森林(LCT,虚点,树上差分)

    洛谷题目传送门 思路分析 最简单粗暴的想法,肯定是大力LCT,每个树都来一遍link之类的操作啦(T飞就不说了) 考虑如何优化算法.如果没有1操作,肯定每个树都长一样.有了1操作,就来仔细分析一下对不 ...

  5. ●洛谷P3348 [ZJOI2016]大森林

    题链: https://www.luogu.org/problemnew/show/P3348 题解: LCT,神题 首先有这么一个结论: 每次的1操作(改变生长点操作),一定只会会对连续的一段区间产 ...

  6. bzoj 4573: [Zjoi2016]大森林 lct splay

    http://www.lydsy.com/JudgeOnline/problem.php?id=4573 http://blog.csdn.net/lych_cys/article/details/5 ...

  7. P3348 [ZJOI2016]大森林(Link-cut-tree)

    传送门 题解 题面大意: \(0.\)区间加节点 \(1.\)区间换根 \(2.\)单点询问距离 如果没有\(1\)操作,因为区间加节点都是加在下面,所以我们可以直接把\(n\)棵树压成一棵树,直接询 ...

  8. BZOJ4573:[ZJOI2016]大森林——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4573 https://www.luogu.org/problemnew/show/P3348#sub ...

  9. [ZJOI2016]大森林

    Description: 小Y家里有一个大森林,里面有n棵树,编号从1到n 0 l r 表示将第 l 棵树到第 r 棵树的生长节点下面长出一个子节点,子节点的标号为上一个 0 号操作叶子标号加 1(例 ...

随机推荐

  1. LAMP 2.2 Apache配置静态缓存

    这里的静态文件指的是图片.js.css 等文件,用户访问一个站点,其实大多数元素都是图片.js.css 等,这些静态文件其实是会被客户端的浏览器缓存到本地电脑上的,目的就是为了下次再请求时不再去服务器 ...

  2. linux命令-du查看占用磁盘空间大小

    格式 df -h 查看磁盘分区情况 du /etc 目录文件大小都列出来 单位是k最后一行是总和 du -m 单位是m 小于1m写成1m du -h 单位人性化显示k/m du -sh /etc 查看 ...

  3. DAY13-前端之jQuery

    jQuery jQuery介绍 jQuery是一个轻量级的.兼容多浏览器的JavaScript库. jQuery使用户能够更方便地处理HTML Document.Events.实现动画效果.方便地进行 ...

  4. webService(简单小demo)

    1.什么是webService? 1.1.先说好处: WebService是两个系统的远程调用,使两个系统进行数据交互,如应用: 天气预报服务.银行ATM取款.使用邮箱账号登录各网站等. WebSer ...

  5. java中什么是代码点,什么是代码单元?

    1.代码点&代码单元,是从Unicode标准而来的术语,Unicode标准的核心是一个编码字符集,它为每一个字符分配一个唯一数字.Unicode标准始终使用16进制数字,并且在书写时在前面加上 ...

  6. hihocoder1513 小Hi的烦恼

    传送门 分析 论bitset的妙用......我们利用桶排将输入的数据排序,之后分别考虑5维,a[i][j]表示考虑第i个人第j维的情况下于其它人的大小关系.最后将5维的信息并起来求1的个数即可 代码 ...

  7. Luogu 2114 [NOI2014]起床困难综合症

    还挺简单的. 发现这几个二进制运算并不会进位,所以我们从高到低按位贪心,一位一位计算贡献. 发现$2^{30}$刚好大于$1e9$,所以最多只要算29位. 首先算出一个全都是$0$的二进制数和一个全都 ...

  8. scala中同步块

    private def initializeIfNecessary() { if (!Logging.initialized) { Logging.initLock.synchronized { if ...

  9. Java基础-集合框架-ArrayList源码分析

    一.JDK中ArrayList是如何实现的 1.先看下ArrayList从上而下的层次图: 说明: 从图中可以看出,ArrayList只是最下层的实现类,集合的规则和扩展都是AbstractList. ...

  10. java Linkedhashmap源码分析

    LinkedHashMap类似于HashMap,但是迭代遍历它时,取得“键值对”的顺序是插入次序,或者是最近最少使用(LRU)的次序.只比HashMap慢一点:而在迭代访问时反而更快,因为它使用链表维 ...