Luogu 1792 算是双倍经验。

我们考虑对于一个点,我们要么选它,要么选它周围的两个点。

所以我们考虑用一个堆来维护,每次从堆顶取出最大值之后我们把它的权值记为:它左边的权值加上它右边的权值减去它自己的权值。即$a_{pos} = a_{l(pos)} + a_{r(pos)} - a_{pos}$。然后把它丢到堆里去。

这样子如果下次取出来这个值就相当于不选原来选过的那个点,而改选它旁边的两个点,而这样选的总的点数也是一样的,这个过程也可以扩展到一个区间,所以这样子可以求出最优解。

对于那些取出来的点的两边的点,我们下次在取出来的时候不应该再计算贡献,所以记一个$vis$。

这个“左边的点”和“右边的点”可以用链表维护。

注意到本题中不一定选满$k$个,所以当取出来的堆顶权值为负的时候直接$break$掉,而在Luogu1792中一定要选满$k$个。

时间复杂度$O(klogn)$。

Code:

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
typedef long long ll; const int N = 5e5 + ; int n, K, nxt[N], pre[N];
ll a[N];
bool vis[N]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} struct Node {
ll val; int pos; Node(ll v = , int p = ) {val = v, pos = p;} friend bool operator < (const Node &x, const Node &y) {
return x.val < y.val;
} };
priority_queue <Node> Q; inline void del(int p) {
nxt[pre[p]] = nxt[p];
pre[nxt[p]] = pre[p];
vis[p] = ;
} int main() {
read(n), read(K);
for(int i = ; i <= n; i++) {
read(a[i]);
nxt[i] = i + , pre[i] = i - ;
Q.push(Node(a[i], i));
} ll ans = 0LL;
for(; K--; ) {
for(; vis[Q.top().pos]; Q.pop());
Node out = Q.top(); Q.pop();
if(out.val < ) break;
int x = pre[out.pos], y = nxt[out.pos];
ans += out.val;
Q.push(Node(a[out.pos] = a[x] + a[y] - out.val, out.pos));
del(x), del(y);
} printf("%lld\n", ans);
return ;
}

Luogu 1484 种树的更多相关文章

  1. luogu 1484\1792 种树 奇怪的贪心可反悔

    1484 种树 此版本是线性的,那么根据链表维护即可: 构建新点,点的左右分别是原整个区间的前驱及后继,再正常维护即可 注意两个版本的维护有所不同 第二个版本的维护直接将左右两点删除 1792 种树2 ...

  2. luogu P1250 种树

    我来总结一下最常用的两种办法 1.贪心 2.差分约束 那么我们先来讲,贪心版<种树> 大家可能知道有一个题和这个类似,那个是钉钉子而这个是种树 我们可以借用钉钉子的思路来想,首先这个是让你 ...

  3. Luogu P1484 种树

    这道题目还是比较简单的 首先题目的意思就让我们很轻易地想到DP 我们设f[i][j]表示前i个坑中种j棵树的最大利益,则有: f[i][j]=max(f[i-1][j],f[i-2][j-1]+a[i ...

  4. dp题

    1.luogu 1484种树 50分思路:dp,但是数据规模过大没法dp选择奇怪贪心 dp方程 到i坑种j树 dp[i][j]=max(dp[i-1][j],dp[i-2][j-1]) 100分思路: ...

  5. Guard Duty (medium) Codeforces - 958E2 || (bzoj 2151||洛谷P1792) 种树 || 编译优化

    https://codeforces.com/contest/958/problem/E2 首先求出N个时刻的N-1个间隔长度,问题就相当于在这些间隔中选K个数,相邻两个不能同时选,要求和最小 方法1 ...

  6. Luogu P5564 [Celeste-B]Say Goodbye (多项式、FFT、Burnside引理、组合计数)

    题目链接 https://www.luogu.org/problem/P5564 题解 这题最重要的一步是读明白题. 为了方便起见下面设环长可以是\(1\), 最后统计答案时去掉即可. 实际上就相当于 ...

  7. [luogu]P1133 教主的花园[DP]

    [luogu]P1133 教主的花园 ——!x^n+y^n=z^n 题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会 ...

  8. P1250 种树(差分约束 / 贪心)

    题目描述 一条街的一边有几座房子.因为环保原因居民想要在路边种些树.路边的地区被分割成块,并被编号成1-N.每个部分为一个单位尺寸大小并最多可种一棵树.每个居民想在门前种些树并指定了三个号码B,E,T ...

  9. 帝国の狂欢(种树)(可撤销DP)

    题目描述 马上就要开学了!!! 为了给回家的童鞋们接风洗尘,HZOI帝国的老大决定举办一场狂欢舞会. 然而HZOI帝国头顶上的HZ大帝国十分小气,并不愿意给同学们腾出太多的地方.所以留给同学们开par ...

随机推荐

  1. CodeForces - 150C :Smart Cheater (线段树,求最大连续区间)

    I guess there's not much point in reminding you that Nvodsk winters aren't exactly hot. That increas ...

  2. poj2411 Mondriaan's Dream[简单状压dp]

    $11*11$格子板上铺$1*2$地砖方案.以前做过?权当复习算了,毕竟以前学都是浅尝辄止的..常规题,注意两个条件:上一行铺竖着的则这一行同一位一定要铺上竖的,这一行单独铺横的要求枚举集合中出现连续 ...

  3. LCD升压反压驱动电路

    在嵌入式系统里,较多场合需要LCD人机界面.分析以下LCD驱动电路. LCD_VIN是3.6~5V,经过DC/DC burst升压得到LCD_AVDD,LCD_AVDD为LCD需要的模拟电压,根据LC ...

  4. STL理论基础、容器、迭代器、算法

    一.STL基本概念 STL(Standard Template Library,标准模板库)是惠普实验室开发的一系列软件的统称.现然主要出现在C++中,但在被引入C++之前该技术就已经存在了很长的一段 ...

  5. vue项目错误集

    1.报错:vue.esm.js?efeb:591 [Vue warn]: Avoid using non-primitive value as key, use string/number value ...

  6. 新的开发域名 fastadmin.tk

    新的开发域名 fastadmin.tk 这个的所有子域名批向 127.0.0.1,可以用于开发. 以后不用再修改系统的 hosts. 使用案例 手把手教你安装 FastAdmin 到虚拟主机 (php ...

  7. POJ1456:Supermarket(并查集版)

    浅谈并查集:https://www.cnblogs.com/AKMer/p/10360090.html 题目传送门:http://poj.org/problem?id=1456 堆作法:https:/ ...

  8. spring事务-说说Propagation及其实现原理

    前言 spring目前已是java开发的一个事实标准,这得益于它的便利.功能齐全.容易上手等特性.在开发过程当中,操作DB是非常常见的操作,而涉及到db,就会涉及到事务.事务在平时的开发过程当中,就算 ...

  9. Bug:DataGridCell的显示不完整

    最近在使用DataGrid时遇到一个bug, 在客户机器上DataGrid的内容显示不完整, 具体表现为某些列的显示为空. 具体的可视树为:DataGridCell > ContentPrese ...

  10. Mysql事件的创建和使用

    1.查看事件是否开启SHOW VARIABLES LIKE 'event_scheduler'; 2.开启事件SET GLOBAL event_scheduler = ON; 3.创建事件DELIMI ...