写在前面:

DPMDeformable Part Model),正如其名称所述,可变形的组件模型,是一种基于组件的检测算法,其所见即其意。该模型由大神Felzenszwalb在2008年提出,并发表了一系列的cvpr,NIPS。并且还拿下了2010年,PASCAL VOC的“终身成就奖”。

由于DPM用到了HOG的东西,可以参考本人http://blog.csdn.net/qq_14845119/article/details/52187774

算法思想:

(1)Root filter+ Part filter:

该模型包含了一个8*8分辨率的根滤波器(Root filter)(左)和4*4分辨率的组件滤波器(Part filter)(中)。其中,中图的分辨率为左图的2倍,并且Part filter的大小是Root filter的2倍,因此,看的梯度会更加精细。右图为其高斯滤波后的2倍空间模型。

(左)Rootfilter(中) Part filter (右)高斯滤波后模型

(2)响应值(score)的计算:

响应值得分公式如下:

其中,

x 0, y 0, l 0分别为锚点的横坐标,纵坐标,尺度。

R 0,l 0 (x 0, y 0)为根模型的响应分数

Di,l 0−λ(2(x 0, y 0) + vi)为部件模型的响应分数

b为不同模型组件之间的偏移系数,加上这个偏移量使其与跟模型进行对齐

2(x 0, y 0)表示组件模型的像素为原始的2倍,所以,锚点*2

vi为锚点和理想检测点之间的偏移系数,如下图中红框和黄框

其部件模型的详细响应得分公式如下:

其中,

x, y为训练的理想模型的位置

Ri,l(x + dx, y + dy)为组件模型的匹配得分

di · φd(dx, dy))为组件的偏移损失得分

di ·为偏移损失系数

φd(dx, dy))为组件模型的锚点和组件模型的检测点之间的距离

简单的说,这个公式表明,组件模型的响应越高,各个组件和其相应的锚点距离越小,则响应分数越高,越有可能是待检测的物体。

(3)DPM特征定义:

DPM首先采用的是HOG进行特征的提取,但是又有别于HOG,DPM中,只保留了HOG中的Cell。如上图所示,假设,一个8*8的Cell,将该细胞单元与其对角线临域的4个细胞单元做归一化操作。

提取有符号的HOG梯度,0-360度将产生18个梯度向量,提取无符号的HOG梯度,0-180度将产生9个梯度向量。因此,一个8*8的细胞单元将会产生,(18+9)*4=108,维度有点高,Felzenszwalb大神给出了其优化思想。

首先,只提取无符号的HOG梯度,将会产生4*9=36维特征,将其看成一个4*9的矩阵,分别将行和列分别相加,最终将生成4+9=13个特征向量,为了进一步提高精度,将提取的18维有符号的梯度特征也加进来,这样,一共产生13+18=31维梯度特征。实现了很好的目标检测。

(4)DPM检测流程:

如上图所示,对于任意一张输入图像,提取其DPM特征图,然后将原始图像进行高斯金字塔上采样,然后提取其DPM特征图。对于原始图像的DPM特征图和训练好的Root filter做卷积操作,从而得到Root filter的响应图。对于2倍图像的DPM特征图,和训练好的Part filter做卷积操作,从而得到Part filter的响应图。然后对其精细高斯金字塔的下采样操作。这样Root filter的响应图和Part filter的响应图就具有相同的分辨率了。然后将其进行加权平均,得到最终的响应图。亮度越大表示响应值越大。

(5)Latent SVM:

传统的Hog+SVM和DPM+LatentSVM的区别如上面公式所示。

由于,训练的样本中,负样本集肯定是100%的准确的,而正样本集中就可能有噪声。因为,正样本的标注是人工进行的,人是会犯错的,标注的也肯定会有不精确的。因此,需要首先去除里面的噪声数据。而对于剩下的数据,里面由于各种角度,姿势的不一样,导致训练的模型的梯度图也比较发散,无规则。因此需要选择其中的具有相同的姿势的数据,即离正负样本的分界线最近的那些样本,将离分界线很近的样本称为Hard-examples,相反,那些距离较远的称为Easy-examples。

实际效果图如下图所示:

实验效果:

如下图所示,左面为检测自行车的检测效果,右面为Root filter,Part filter,2维高斯滤波下的偏离损失图

References:

[1]: https://people.eecs.berkeley.edu/~rbg/latent/index.html

[2]: P. Felzenszwalb, D. McAllester, D.Ramanan A Discriminatively Trained, Multiscale, Deformable Part Model IEEEConference on Computer Vision and Pattern Recognition (CVPR), 2008

[3]: P. Felzenszwalb, R. Girshick, D.McAllester, D. Ramanan Object Detection with Discriminatively TrainedPart Based Models IEEE Transactions on Pattern Analysis and MachineIntelligence, Vol. 32, No. 9, Sep. 2010

[4]: P. Felzenszwalb, R. Girshick, D.McAllester Cascade Object Detection with Deformable Part Models IEEEConference on Computer Vision and Pattern Recognition (CVPR), 2010

[5]: P. Felzenszwalb, D. McAllester ObjectDetection Grammars University of Chicago, Computer Science TR-2010-02, February2010

[6]: R. Girshick, P. Felzenszwalb, D.McAllester Object Detection with Grammar Models Neural InformationProcessing Systems (NIPS), 2011

[7]: R. Girshick From RigidTemplates to Grammars: Object Detection with Structured Models
Ph.D. dissertation, The University of Chicago, Apr. 2012

DPM(Deformable Part Model)原理详解(汇总)的更多相关文章

  1. DPM(Deformable Parts Model)--原理(一)(转载)

    DPM(Deformable Parts Model) Reference: Object detection with discriminatively trained partbased mode ...

  2. DPM(Deformable Parts Model)--原理(一)

    http://blog.csdn.net/ttransposition/article/details/12966521 DPM(Deformable Parts Model) Reference: ...

  3. 关于DPM(Deformable Part Model)算法中模型结构的解释

    关于可变部件模型的描写叙述在作者[2010 PAMI]Object Detection with Discriminatively Trained Part Based Models的论文中已经有说明 ...

  4. 锁之“轻量级锁”原理详解(Lightweight Locking)

    大家知道,Java的多线程安全是基于Lock机制实现的,而Lock的性能往往不如人意. 原因是,monitorenter与monitorexit这两个控制多线程同步的bytecode原语,是JVM依赖 ...

  5. LVS原理详解(3种工作方式8种调度算法)--老男孩

    一.LVS原理详解(4种工作方式8种调度算法) 集群简介 集群就是一组独立的计算机,协同工作,对外提供服务.对客户端来说像是一台服务器提供服务. LVS在企业架构中的位置: 以上的架构只是众多企业里面 ...

  6. [No0000126]SSL/TLS原理详解与WCF中的WS-Security

    SSL/TLS作为一种互联网安全加密技术 1. SSL/TLS概览 1.1 整体结构 SSL是一个介于HTTP协议与TCP之间的一个可选层,其位置大致如下: SSL:(Secure Socket La ...

  7. LVS原理详解(3种工作模式及8种调度算法)

    2017年1月12日, 星期四 LVS原理详解(3种工作模式及8种调度算法)   LVS原理详解及部署之二:LVS原理详解(3种工作方式8种调度算法) 作者:woshiliwentong  发布日期: ...

  8. 2. EM算法-原理详解

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率 ...

  9. DPM(Deformable Parts Model)

    DPM(Deformable Parts Model) Reference: Object detection with discriminatively trained partbased mode ...

  10. Spring框架系列(9) - Spring AOP实现原理详解之AOP切面的实现

    前文,我们分析了Spring IOC的初始化过程和Bean的生命周期等,而Spring AOP也是基于IOC的Bean加载来实现的.本文主要介绍Spring AOP原理解析的切面实现过程(将切面类的所 ...

随机推荐

  1. shell 将字符串分割成数组

    代码:test.sh #!/bin/bash a="one,two,three,four" #要将$a分割开,可以这样: OLD_IFS="$IFS" IFS= ...

  2. SQL Server 预编译执行SQLs

    问题描述: MVC5项目,利用执行sql的方式获取数据,但是在利用预编译执行的时候报错了,字段XXXwhich was not supplied. 其实就是这个参数传了个null导致的.在传参数之前做 ...

  3. Ubuntu角色登录答疑

    1.su 命令验证出错: $ su - rootPassword: su: Authentication failureSorry. 这时候输入 $ sudo passwd rootEnter new ...

  4. MySQL读写分离-架构

    MySQL读写分离-架构 简介 对于很多大型网站(pv值百万.千万)来说,在所处理的业务中,其中有70%的业务是查询(select)相关的业务操作(新闻网站,插入一条新闻.查询操作),剩下的则是写(i ...

  5. Python与数据库[2] -> 关系对象映射/ORM[1] -> sqlalchemy 的基本使用示例

    sqlalchemy 的基本使用示例 下面的例子中将利用sqlalchemy进行数据库的连接,通过orm方式利用类实例属性操作的方式对数据库进行相应操作,同时应用一些常用的函数. 完整代码如下: fr ...

  6. HDU 6396 Swordsman --------2018 Multi-University Training Contest 7 (模拟+读入挂)

    原题地址: 打怪升级 一开始有N个怪物:主角有K个能力:只有K个能力都击败怪物才能斩杀怪物并获得K个能力的增值:问最多能杀几个怪物: 做法: 用优先队列把怪物能力装进去:能力小放前面: 最重要的是数据 ...

  7. POJ 2987 Firing(最大权闭合图)

    [题目链接] http://poj.org/problem?id=2987 [题目大意] 为了使得公司效率最高,因此需要进行裁员, 裁去不同的人员有不同的效率提升效果,当然也有可能是负的效果, 如果裁 ...

  8. 七. 多线程编程2.Java线程模型

    Java运行系统在很多方面依赖于线程,所有的类库设计都考虑到多线程.实际上,Java使用线程来使整个环境异步.这有利于通过防止CPU循环的浪费来减少无效部分. 为更好的理解多线程环境的优势可以将它与它 ...

  9. 程设刷题 | 编译C++文件出现to_string is not a member of std 或者 to_string was not declared in this scope的解决方法

    写在前面 原文链接:Enabling string conversion functions in MinGW C++在将整型.浮点型.长整型等数据类型转换为字符串时,可使用<string> ...

  10. OC语言基础之利用property优化封装

    1.property功能用法 1: // @property:可以自动生成某个成员变量的setter和getter声明 2: @property int age;//可以直接免去变量的声明 3: // ...