解题关键:最小费用流

代码一:bellma-ford $O(FVE)$  bellman-ford求最短路,并在最短路上增广,速度较慢

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<iostream>
#include<cmath>
#include<vector>
#define inf 0x3f3f3f3f
#define MAX_V 10010
using namespace std;
typedef long long ll;
struct edge{int to,cap,cost,rev;};
int V;
vector<edge>G[MAX_V];
int dist[MAX_V];
int prevv[MAX_V],preve[MAX_V]; void add_edge(int from,int to,int cap,int cost){
G[from].push_back((edge){to,cap,cost,G[to].size()});
G[to].push_back((edge){from,,-cost,G[from].size()-});
} int min_cost_flow(int s,int t,int f){
int res=;
while(f>){
fill(dist,dist+V,inf);
dist[s]=;
bool update=true;
while(update){
update=false;
for(int v=;v<V;v++){
if(dist[v]==inf) continue;
for(int i=;i<G[v].size();i++){
edge &e=G[v][i];
if(e.cap>&&dist[e.to]>dist[v]+e.cost){
dist[e.to]=dist[v]+e.cost;
prevv[e.to]=v;
preve[e.to]=i;
update=true;
}
}
}
}
if(dist[t]==inf) return -;
int d=f;
for(int v=t;v!=s;v=prevv[v]) d=min(d,G[prevv[v]][preve[v]].cap);
f-=d;
res+=d*dist[t];
for(int v=t;v!=s;v=prevv[v]){
edge &e=G[prevv[v]][preve[v]];
e.cap-=d;
G[v][e.rev].cap+=d;
}
}
return res;
}
int n,m,t1,t2,t3;
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
memset(G,,sizeof G);
V=n;
for(int i=;i<m;i++){
scanf("%d%d%d",&t1,&t2,&t3);
add_edge(t1-,t2-,,t3);
add_edge(t2-,t1-,,t3);
}
printf("%d\n",min_cost_flow(,n-,));
}
return ;
}

代码二:dijkstra,$O(FElogV)$

这里是通过一个定理

s到v的最短距离<=s到u的最短距离+dis(e)

s到u的最短距离+dis(e)-s到v的最短距离>=0

将原先的距离转化为上述的等效距离,即可保证图中无负权边,所以可以用dijkstra算法堆优化来保证复杂度。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<iostream>
#include<cmath>
#include<vector>
#include<queue>
#define inf 0x3f3f3f3f
#define MAX_V 10010
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
struct edge{int to,cap,cost,rev;};
int V;
vector<edge>G[MAX_V];
int h[MAX_V],dist[MAX_V],prevv[MAX_V],preve[MAX_V];
void add_edge(int from,int to,int cap,int cost){
G[from].push_back((edge){to,cap,cost,G[to].size()});
G[to].push_back((edge){from,,-cost,G[from].size()-});
} int min_cost_flow(int s,int t,int f){
int res=;
fill(h,h+V,);
while(f>){
priority_queue<P,vector<P>,greater<P> >que;
fill(dist,dist+V,inf);
dist[s]=;
que.push(P(,s));
while(!que.empty()){
P p=que.top();que.pop();
int v=p.second;
if(dist[v]<p.first) continue;
for(int i=;i<G[v].size();i++){
edge &e=G[v][i];
if(e.cap>&&dist[e.to]>dist[v]+e.cost+h[v]-h[e.to]){
dist[e.to]=dist[v]+e.cost+h[v]-h[e.to];
prevv[e.to]=v;
preve[e.to]=i;
que.push(P(dist[e.to],e.to));
}
}
}
if(dist[t]==inf) return -;
for(int v=;v<V;v++) h[v]+=dist[v]; //增广
int d=f;
for(int v=t;v!=s;v=prevv[v]) d=min(d,G[prevv[v]][preve[v]].cap);
f-=d;
res+=d*h[t];
for(int v=t;v!=s;v=prevv[v]){
edge &e=G[prevv[v]][preve[v]];
e.cap-=d;
G[v][e.rev].cap+=d;
}
}
return res;
}
int n,m,t1,t2,t3;
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
memset(G,,sizeof G);
V=n;
for(int i=;i<m;i++){
scanf("%d%d%d",&t1,&t2,&t3);
add_edge(t1-,t2-,,t3);
add_edge(t2-,t1-,,t3);
}
printf("%d\n",min_cost_flow(,n-,));
}
return ;
}

[poj2135]Farm Tour(最小费用流)的更多相关文章

  1. POJ2135 Farm Tour

      Farm Tour Time Limit: 2MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Description ...

  2. POJ2135 Farm Tour —— 最小费用最大流

    题目链接:http://poj.org/problem?id=2135 Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  3. poj2135 Farm Tour(费用流)

    Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprise ...

  4. 【网络流#9】POJ 2135 Farm Tour 最小费用流 - 《挑战程序设计竞赛》例题

    [题意]给出一张无向图,从1开始到n,求两条没有公共边的最短路,使得路程总和最小 每条边的权值设为费用,最大流量设为1,然后就是从源点到汇点流量为2的最小费用流. 因为是规定了流量,新建一个源点和一个 ...

  5. POJ 2135 Farm Tour 最小费用流

    两条路不能有重边,既每条边的容量是1.求流量为2的最小费用即可. //#pragma comment(linker, "/STACK:1024000000,1024000000") ...

  6. POJ2135 Farm Tour(最小费用最大流)

    题目问的是从1到n再回到1边不重复走的最短路,本质是找1到n的两条路径不重复的尽量短的路. #include<cstdio> #include<cstring> #includ ...

  7. POJ Farm Tour

    Farm Tour 题目: 约翰有N块地,家在1号,而N号是个仓库.农场内有M条道路(双向的),道路i连接这ai号地和bi号地,长度为ci. 约翰希望依照从家里出发,经过若干地后达到仓库.然后再返回家 ...

  8. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

  9. poj2135(简单的最小费用流问题)

    题目链接:http://poj.org/problem?id=2135 Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

随机推荐

  1. pinpoint本地开发——collector

    本地启动collector 启动前准备 启动之前,要先确保本地已经可以正常package,install 必须保证install成功,才能进行后续步骤,无法install或者package参考[pin ...

  2. iOS 尝试用 block 闭包 去代替delegate 实现方法

    通常都是这样创建alert 再加一个代理 // 创建一个UIAlertView并显示出来 UIAlertView *alertview = [[UIAlertView alloc] initWithT ...

  3. hadoop自带例子SecondarySort源码分析MapReduce原理

    这里分析MapReduce原理并没用WordCount,目前没用过hadoop也没接触过大数据,感觉,只是感觉,在项目中,如果真的用到了MapReduce那待排序的肯定会更加实用. 先贴上源码 pac ...

  4. HDU 1800 Flying to the Mars 字典树,STL中的map ,哈希树

    http://acm.hdu.edu.cn/showproblem.php?pid=1800 字典树 #include<iostream> #include<string.h> ...

  5. Spring Cloud之Swagger集群搭建

    在微服务中,Swagger是每个服务 比如会员服务,订单服务,支付服务 进行继承. 如何将整个微服务中的Swagger进行合成,同一台服务器上. 使用Zuul+Swagger实现管理整个微服务API文 ...

  6. Spring Cloud之Eureka自我保护环境搭建

    Eureka详解 服务消费者模式 获取服务 消费者启动的时候,使用服务别名,会发送一个rest请求到服务注册中心获取对应的服务信息,让后会缓存到本地jvm客户端中,同时客户端每隔30秒从服务器上更新一 ...

  7. html编辑器的调用

    <html><head>     <metahttp-equiv="Content-type"content="text/html; cha ...

  8. Oracle数据库定义语言(DDL)

    --使用Create遇见创建表 Create Table table_name ( column_name datatype [null|not null], column_name datatype ...

  9. Storm- Storm作业提交运行流程

    用户编写Storm Topology 使用client提交Topology给Nimbus Nimbus指派Task给Supervisor Supervisor为Task启动Worker Worker执 ...

  10. 聊聊js跨域

    推荐先读一下这篇文章: https://segmentfault.com/a/1190000012469713http://www.dailichun.com/2017/03/22/ajaxCross ...