Pythonyield使用浅析
转自:https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/
您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?
我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。
如何生成斐波那契數列
斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:
清单 1. 简单输出斐波那契數列前 N 个数
1
2
3
4
5
6
|
def fab(max): n, a, b = 0, 0, 1 while n < max: print b a, b = b, a + b n = n + 1 |
执行 fab(5),我们可以得到如下输出:
1
2
3
4
5
6
|
>>> fab(5) 1 1 2 3 5 |
结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。
要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:
清单 2. 输出斐波那契數列前 N 个数第二版
1
2
3
4
5
6
7
8
|
def fab(max): n, a, b = 0, 0, 1 L = [] while n < max: L.append(b) a, b = b, a + b n = n + 1 return L |
可以使用如下方式打印出 fab 函数返回的 List:
1
2
3
4
5
6
7
8
|
>>> for n in fab(5): ... print n ... 1 1 2 3 5 |
改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List
来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:
清单 3. 通过 iterable 对象来迭代
1
|
for i in range(1000): pass |
会导致生成一个 1000 个元素的 List,而代码:
1
|
for i in xrange(1000): pass |
则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。
利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
class Fab(object): def __init__(self, max): self.max = max self.n, self.a, self.b = 0, 0, 1 def __iter__(self): return self def next(self): if self.n < self.max: r = self.b self.a, self.b = self.b, self.a + self.b self.n = self.n + 1 return r raise StopIteration() |
Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:
1
2
3
4
5
6
7
8
|
>>> for n in Fab(5): ... print n ... 1 1 2 3 5 |
然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:
清单 5. 使用 yield 的第四版
1
2
3
4
5
6
7
8
9
|
def fab(max): n, a, b = 0, 0, 1 while n < max: yield b # print b a, b = b, a + b n = n + 1 ''' |
第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。
调用第四版的 fab 和第二版的 fab 完全一致:
1
2
3
4
5
6
7
8
|
>>> for n in fab(5): ... print n ... 1 1 2 3 5 |
简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。
也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:
清单 6. 执行流程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
>>> f = fab(5) >>> f.next() 1 >>> f.next() 1 >>> f.next() 2 >>> f.next() 3 >>> f.next() 5 >>> f.next() Traceback (most recent call last): File "< stdin >", line 1, in < module > StopIteration |
当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。
我们可以得出以下结论:
一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。
如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:
清单 7. 使用 isgeneratorfunction 判断
1
2
3
|
>>> from inspect import isgeneratorfunction >>> isgeneratorfunction(fab) True |
要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:
清单 8. 类的定义和类的实例
1
2
3
4
5
|
>>> import types >>> isinstance(fab, types.GeneratorType) False >>> isinstance(fab(5), types.GeneratorType) True |
fab 是无法迭代的,而 fab(5) 是可迭代的:
1
2
3
4
5
|
>>> from collections import Iterable >>> isinstance(fab, Iterable) False >>> isinstance(fab(5), Iterable) True |
每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
>>> f1 = fab(3) >>> f2 = fab(5) >>> print 'f1:', f1.next() f1: 1 >>> print 'f2:', f2.next() f2: 1 >>> print 'f1:', f1.next() f1: 1 >>> print 'f2:', f2.next() f2: 1 >>> print 'f1:', f1.next() f1: 2 >>> print 'f2:', f2.next() f2: 2 >>> print 'f2:', f2.next() f2: 3 >>> print 'f2:', f2.next() f2: 5 |
return 的作用
在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
另一个例子
另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:
清单 9. 另一个 yield 的例子
1
2
3
4
5
6
7
8
9
|
def read_file(fpath): BLOCK_SIZE = 1024 with open(fpath, 'rb') as f: while True: block = f.read(BLOCK_SIZE) if block: yield block else: return |
以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。
注:本文的代码均在 Python 2.7 中调试通过
Pythonyield使用浅析的更多相关文章
- SQL Server on Linux 理由浅析
SQL Server on Linux 理由浅析 今天的爆炸性新闻<SQL Server on Linux>基本上在各大科技媒体上刷屏了 大家看到这个新闻都觉得非常震精,而美股,今天微软开 ...
- 【深入浅出jQuery】源码浅析--整体架构
最近一直在研读 jQuery 源码,初看源码一头雾水毫无头绪,真正静下心来细看写的真是精妙,让你感叹代码之美. 其结构明晰,高内聚.低耦合,兼具优秀的性能与便利的扩展性,在浏览器的兼容性(功能缺陷.渐 ...
- 高性能IO模型浅析
高性能IO模型浅析 服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种: (1)同步阻塞IO(Blocking IO):即传统的IO模型. (2)同步非阻塞IO(Non-blocking ...
- netty5 HTTP协议栈浅析与实践
一.说在前面的话 前段时间,工作上需要做一个针对视频质量的统计分析系统,各端(PC端.移动端和 WEB端)将视频质量数据放在一个 HTTP 请求中上报到服务器,服务器对数据进行解析.分拣后从不同的 ...
- Jvm 内存浅析 及 GC个人学习总结
从诞生至今,20多年过去,Java至今仍是使用最为广泛的语言.这仰赖于Java提供的各种技术和特性,让开发人员能优雅的编写高效的程序.今天我们就来说说Java的一项基本但非常重要的技术内存管理 了解C ...
- 从源码浅析MVC的MvcRouteHandler、MvcHandler和MvcHttpHandler
熟悉WebForm开发的朋友一定都知道,Page类必须实现一个接口,就是IHttpHandler.HttpHandler是一个HTTP请求的真正处理中心,在HttpHandler容器中,ASP.NET ...
- 【深入浅出jQuery】源码浅析2--奇技淫巧
最近一直在研读 jQuery 源码,初看源码一头雾水毫无头绪,真正静下心来细看写的真是精妙,让你感叹代码之美. 其结构明晰,高内聚.低耦合,兼具优秀的性能与便利的扩展性,在浏览器的兼容性(功能缺陷.渐 ...
- 浅析匿名函数、lambda表达式、闭包(closure)区别与作用
浅析匿名函数.lambda表达式.闭包(closure)区别与作用 所有的主流编程语言都对函数式编程有支持,比如c++11.python和java中有lambda表达式.lua和JavaScript中 ...
- word-break|overflow-wrap|word-wrap——CSS英文断句浅析
---恢复内容开始--- word-break|overflow-wrap|word-wrap--CSS英文断句浅析 一 问题引入 今天在再次学习 overflow 属性的时候,查看效果时,看到如下结 ...
随机推荐
- 初识QT中的qDebug()
首先在头文件中包含 #include<QDebug> 当开发者需要为一个装置.文件.字符串或者控制台,写出调试和跟踪信息时,该类被使用. 在需要使用的地方插入: qDebug(][]); ...
- spring教程(一):简单实现(转)
转:https://www.cnblogs.com/Lemon-i/p/8398263.html 一.概念介绍 1. 一站式框架:管理项目中的对象.spring框架性质是容器(对象容器) 2. 核心 ...
- HttpServletRequest request 获取form参数的两种方式
@RequestMapping(value="/pay",method = RequestMethod.POST) public String buildRequest(HttpS ...
- javaweb基础(38)_事务
一.事务的概念 事务指逻辑上的一组操作,组成这组操作的各个单元,要不全部成功,要不全部不成功. 例如:A——B转帐,对应于如下两条sql语句 update from account set mone ...
- python while循环与for循环
今天刚看了一下python的while和for循环,所以打算记录一下: while语句是python中的循环条件语句,while 判断条件 : pass break 例如: i = 1 sum = 1 ...
- SpringBoot学习8:springboot整合freemarker
1.创建maven项目,添加pom依赖 <!--springboot项目依赖的父项目--> <parent> <groupId>org.springframewor ...
- SqlServer和Oracle修改表结构语句
SQL Server:1.增加列 ALTER TABLE users ADD address varchar(30);2.删除列 ALTER TABLE users DROP COLUMN add ...
- top小火箭
// my.js function $(id){return document.getElementById(id)};function show(obj){obj.style.display = & ...
- 【杂题总汇】HDU多校赛第十场 Videos
[HDU2018多校赛第十场]Videos 最后一场比赛也结束了…… +HDU传送门+ ◇ 题目 <简要翻译> 有n个人以及m部电影,每个人都有一个快乐值.每场电影都有它的开始.结束时间和 ...
- lintcode_114_不同的路径
不同的路径 描述 笔记 数据 评测 有一个机器人的位于一个 m × n 个网格左上角. 机器人每一时刻只能向下或者向右移动一步.机器人试图达到网格的右下角. 问有多少条不同的路径? 注意事项 n和 ...