sklearn中常用数据预处理方法
1. 标准化(Standardization or Mean Removal and Variance Scaling)
变换后各维特征有0均值,单位方差。也叫z-score规范化(零均值规范化)。计算方式是将特征值减去均值,除以标准差。
sklearn.preprocessing.scale(X)
一般会把train和test集放在一起做标准化,或者在train集上做标准化后,用同样的标准化器去标准化test集,此时可以用scaler
scaler = sklearn.preprocessing.StandardScaler().fit(train)
scaler.transform(train)
scaler.transform(test)
实际应用中,需要做特征标准化的常见情景:SVM
2. 最小-最大规范化
最小-最大规范化对原始数据进行线性变换,变换到[0,1]区间(也可以是其他固定最小最大值的区间)
min_max_scaler = sklearn.preprocessing.MinMaxScaler()
min_max_scaler.fit_transform(X_train)
3.规范化(Normalization)
规范化是将不同变化范围的值映射到相同的固定范围,常见的是[0,1],此时也称为归一化。《机器学习》周志华
将每个样本变换成unit norm。
X = [[ 1, -1, 2],[ 2, 0, 0], [ 0, 1, -1]]
sklearn.preprocessing.normalize(X, norm='l2')
得到
array([[ 0.40, -0.40, 0.81], [ 1, 0, 0], [ 0, 0.70, -0.70]])
可以发现对于每一个样本都有,0.4^2+0.4^2+0.81^2=1,这就是L2 norm,变换后每个样本的各维特征的平方和为1。类似地,L1 norm则是变换后每个样本的各维特征的绝对值和为1。还有max norm,则是将每个样本的各维特征除以该样本各维特征的最大值。
在度量样本之间相似性时,如果使用的是二次型kernel,需要做Normalization
4. 特征二值化(Binarization)
给定阈值,将特征转换为0/1
binarizer = sklearn.preprocessing.Binarizer(threshold=1.1)
binarizer.transform(X)
5. 标签二值化(Label binarization)
lb = sklearn.preprocessing.LabelBinarizer()
6. 类别特征编码
有时候特征是类别型的,而一些算法的输入必须是数值型,此时需要对其编码。
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
enc.transform([[0, 1, 3]]).toarray() #array([[ 1., 0., 0., 1., 0., 0., 0., 0., 1.]])
上面这个例子,第一维特征有两种值0和1,用两位去编码。第二维用三位,第三维用四位
7.标签编码(Label encoding)
le = sklearn.preprocessing.LabelEncoder()
le.fit([1, 2, 2, 6])
le.transform([1, 1, 2, 6]) #array([0, 0, 1, 2])
#非数值型转化为数值型
le.fit(["paris", "paris", "tokyo", "amsterdam"])
le.transform(["tokyo", "tokyo", "paris"]) #array([2, 2, 1])
8.特征中含异常值时
sklearn.preprocessing.robust_scale
9.生成多项式特征
这个其实涉及到特征工程了,多项式特征/交叉特征。
poly = sklearn.preprocessing.PolynomialFeatures(2)
poly.fit_transform(X)
原始特征:
转化后:
sklearn中常用数据预处理方法的更多相关文章
- sklearn中的数据预处理和特征工程
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...
- 机器学习实战基础(八):sklearn中的数据预处理和特征工程(一)简介
1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字 ...
- 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤
相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...
- 机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介
当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人, ...
- 机器学习实战基础(十一):sklearn中的数据预处理和特征工程(四) 数据预处理 Preprocessing & Impute 之 处理分类特征:编码与哑变量
处理分类特征:编码与哑变量 在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fit的 ...
- 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值
缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...
- 机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化
1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回 ...
- matlab、sklearn 中的数据预处理
数据预处理(normalize.scale) 0. 使用 PCA 降维 matlab: [coeff, score] = pca(A); reducedDimension = coeff(:,1:5) ...
- sklearn中的数据预处理----good!! 标准化 归一化 在何时使用
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimiz ...
随机推荐
- Evil Book -- CodeChef
传送门 分析 对于这道题,我们首先思考一个贪心策略,即对于所有我们要打败的厨师我们肯定可以先打败需使用帮助次数少的厨师再打败需使用帮助次数多的厨师 ,因为这样可以使得能支付得起帮助费用的可能性尽可能的 ...
- Python程序设计3——字典
1 字典 字典是Python唯一内建的映射类型.字典是键值对的集合. 1.1 字典的使用 某些情况下字典更加好用,比如一个电话列表.注意:电话号码只能用字符串数字表示,否则会出问题.因为电话号码一旦以 ...
- Netty学习大纲
1.BIO.NIO和AIO2.Netty 的各大组件3.Netty的线程模型4.TCP 粘包/拆包的原因及解决方法5.了解哪几种序列化协议?包括使用场景和如何去选择6.Netty的零拷贝实现7.Net ...
- CodeForces - 710C Magic Odd Square(奇数和幻方构造)
Magic Odd Square Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, c ...
- delphi 调用百度地图WEBSERVICE转换GPS坐标
百度地图的API说明 使用方法 第一步,申请密钥(ak),作为访问服务的依据: 第二步,按照请求参数说明拼写发送http请求的url,注意需使用第一步申请的ak: 第三步,接收返回的数据(json或者 ...
- Java50道经典习题-程序46 字符串连接
题目:编写一个两个字符串连接的程序 import java.util.Scanner; public class Prog46 { public static void main(String[] a ...
- 自定义Mybatis框架
项目结构: https://files-cdn.cnblogs.com/files/mkl7/ownMybatis.zip 1. 创建maven工程并引入坐标: <?xml versi ...
- 一道面试题关于js中添加动态属性
js中数据类型包含基本数据类型和引用类型,基本类型包括:string.null.undefined.number.boolean.引用类型即是对象比如:array .function以及自定义对象等 ...
- Error: connection reset by peer ,during filebeat connect to elk.
Error screenshot like below: Reason: What I found that was the machine failing had same configuratio ...
- Ubuntu1804登录界面闪退
目前主力机操作系统已经由Ubuntu 16.04 lts升级到Ubuntu 18.04 lts.由于是跨版本升级过来,而且由unity(个人觉得挺好)替换成了gnome3,经常出点小问题.这次由于安装 ...