题目描述

有n 个连续函数fi (x),其中1 ≤ i ≤ n。对于任何两个函数fi (x) 和fj (x),(i != j),恰好存在一个x 使得fi (x) = fj (x),并且存在无穷多的x 使得fi (x) < fj (x)。对于任何i; j; k,满足1 ≤ i < j < k ≤ n,则不存在x 使得fi (x) = fj (x) = fk (x)。

如上左图就是3 个满足条件的函数,最左边从下往上依次为f1; f2; f3。右图中红色部分是这整个函数图像的最低层,我们称它为第一层。同理绿色部分称为第二层,蓝色部分称为第三层。注意到,右图中第一层左边一段属于f1,中间属于f2,最后属于f3。而第二层左边属于f2,接下来一段属于f1,再接下来一段属于f3,最后属于f2。因此,我们称第一层分为了三段,第二层分为了四段。同理第三层只分为了两段。求满足前面条件的n 个函数,第k 层最少能由多少段组成。

输入输出格式

输入格式:

一行两个整数n; k。

输出格式:

一行一个整数,表示n 个函数第k 层最少能由多少段组成。

输入输出样例

输入样例#1:
复制

1 1
输出样例#1: 复制

1

说明

对于100% 的数据满足1 ≤ k ≤ n ≤ 100。

不太会证明。。。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#pragma GCC optimize(2)
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 700005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int main(){
//ios::sync_with_stdio(0);
int n, k; cin >> n >> k;
if (n == 1)cout << 1 << endl;
else cout << 2 * (min(k, n - k + 1)) << endl;
return 0;
}

[ZJOI2009]函数 BZOJ1432的更多相关文章

  1. [ZJOI2009]函数 题解

    题目链接:[ZJOI2009]函数 对于$n=1$的情况,直接输出$1$ 对于$n>1$的情况,由于我们可以将图上下反转,所以第$k$层的情况可以被转成第$n-k+1$层 规律自己打个表可以推出 ...

  2. [luogu2591 ZJOI2009] 函数

    传送门 Solution 画图找规律.. Code //By Menteur_Hxy #include <cstdio> #define min(a,b) ((a)>(b)?(b): ...

  3. 【BZOJ1432】[ZJOI2009]Function(找规律)

    [BZOJ1432][ZJOI2009]Function(找规律) 题面 BZOJ 洛谷 题解 这...找找规律吧. #include<iostream> using namespace ...

  4. bzoj千题计划138:bzoj1432: [ZJOI2009]Function

    http://www.lydsy.com/JudgeOnline/problem.php?id=1432 http://blog.sina.com.cn/s/blog_86942b1401014bd2 ...

  5. BZOJ1432 [ZJOI2009]Function

    Description Input 一行两个整数n; k. Output 一行一个整数,表示n 个函数第k 层最少能由多少段组成. Sample Input 1 1 Sample Output 1 H ...

  6. 【构造】Bzoj1432[ZJOI2009]Function

    Description Input 一行两个整数n; k. Output 一行一个整数,表示n 个函数第k 层最少能由多少段组成. Sample Input 1 1 Sample Output 1   ...

  7. BZOJ1432: [ZJOI2009]Function(找规律)

    Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1523  Solved: 1128[Submit][Status][Discuss] Descriptio ...

  8. bzoj 1432 [ZJOI2009]Function 思想

    [bzoj1432][ZJOI2009]Function Description Input 一行两个整数n; k. Output 一行一个整数,表示n 个函数第k 层最少能由多少段组成. Sampl ...

  9. BZOJ 1432: [ZJOI2009]Function

    1432: [ZJOI2009]Function Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1046  Solved: 765[Submit][Sta ...

随机推荐

  1. Celery-4.1 用户指南: Canvas: Designing Work-flows(设计工作流程)

    签名 2.0 版本新特性. 刚刚在calling 这一节中学习了使用 delay 方法调用任务,并且通常这就是你所需要的,但是有时候你可能想将一个任务调用的签名传递给另外一个进程或者作为另外一个函数的 ...

  2. [我的CVE][CVE-2017-15708]Apache Synapse Remote Code Execution Vulnerability

    漏洞编号:CNVD-2017-36700 漏洞编号:CVE-2017-15708 漏洞分析:https://www.javasec.cn/index.php/archives/117/ [Apache ...

  3. appium运行时启动失败

    1.检查服务是否开启 2.简单Android设备是否连接成功 3.检查4723端口是否被占用: netstat -ano|findstr '4723' 查到被占用后,找到pid,进入任务管理器查看该p ...

  4. 类型:sqlserver;问题:版本;结果:sqlserver版本区分

    LocalDB (SqlLocalDB)LocalDB 是 Express 的一种轻型版本,该版本具备所有可编程性功能,但在用户模式下运行,并且具有快速的零配置安装和必备组件要求较少的特点.如果您需要 ...

  5. java.lang.OutOfMemoryError: Java heap space异常

    最近使用Tomcat跑项目时,其他项目可以正常运行,但有一个项目报java.lang.OutOfMemoryError: Java heap space异常,查了资料后,找到一个处理我所遇见异常的解决 ...

  6. 3-在EasyNetQ上使用SSL连接(黄亮翻译)

    EasyNetQ可以通过SSL进行连接.这篇指南的作者Gordon Coulter最初为回应一个提问写的. 首先,你必须仔细依据https://www.rabbitmq.com/ssl.html文章中 ...

  7. python之Dict和set类型

    Dict就是一种key:value的表格: >>> d = { 'Adam':95, 'Lisa':85, 'Bart':59, 'Paul':75 } >>> p ...

  8. WPA密码攻击宝典

    原则:密码以8-10位为主.11位仅限于当地手机号.一般人的多年用数字做密码的习惯和心理,先数 字.再字母,或数字.字母重复几遍,字符几乎全用小写,所以淘汰大写及"~!@#$%^&* ...

  9. dubbo-admin打包和zookper安装

    1 首选安装Zookper,下载zookeeper-3.5.3-beta版本,在这里我主要演示这个:下载地址:http://mirrors.hust.edu.cn/apache/zookeeper/ ...

  10. php返回文件路径

    1 basename — 返回路径中的文件名部分 如果文件名为test.php,路径为www/hj/test.php echo basename($_SERVER['PHP_SELF']); 输出为: ...