题目描述

有n 个连续函数fi (x),其中1 ≤ i ≤ n。对于任何两个函数fi (x) 和fj (x),(i != j),恰好存在一个x 使得fi (x) = fj (x),并且存在无穷多的x 使得fi (x) < fj (x)。对于任何i; j; k,满足1 ≤ i < j < k ≤ n,则不存在x 使得fi (x) = fj (x) = fk (x)。

如上左图就是3 个满足条件的函数,最左边从下往上依次为f1; f2; f3。右图中红色部分是这整个函数图像的最低层,我们称它为第一层。同理绿色部分称为第二层,蓝色部分称为第三层。注意到,右图中第一层左边一段属于f1,中间属于f2,最后属于f3。而第二层左边属于f2,接下来一段属于f1,再接下来一段属于f3,最后属于f2。因此,我们称第一层分为了三段,第二层分为了四段。同理第三层只分为了两段。求满足前面条件的n 个函数,第k 层最少能由多少段组成。

输入输出格式

输入格式:

一行两个整数n; k。

输出格式:

一行一个整数,表示n 个函数第k 层最少能由多少段组成。

输入输出样例

输入样例#1:
复制

1 1
输出样例#1: 复制

1

说明

对于100% 的数据满足1 ≤ k ≤ n ≤ 100。

不太会证明。。。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#pragma GCC optimize(2)
//#include<cctype>
//#pragma GCC optimize("O3")
using namespace std;
#define maxn 700005
#define inf 0x3f3f3f3f
#define INF 9999999999
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++) inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll qpow(ll a, ll b, ll c) {
ll ans = 1;
a = a % c;
while (b) {
if (b % 2)ans = ans * a%c;
b /= 2; a = a * a%c;
}
return ans;
} int main(){
//ios::sync_with_stdio(0);
int n, k; cin >> n >> k;
if (n == 1)cout << 1 << endl;
else cout << 2 * (min(k, n - k + 1)) << endl;
return 0;
}

[ZJOI2009]函数 BZOJ1432的更多相关文章

  1. [ZJOI2009]函数 题解

    题目链接:[ZJOI2009]函数 对于$n=1$的情况,直接输出$1$ 对于$n>1$的情况,由于我们可以将图上下反转,所以第$k$层的情况可以被转成第$n-k+1$层 规律自己打个表可以推出 ...

  2. [luogu2591 ZJOI2009] 函数

    传送门 Solution 画图找规律.. Code //By Menteur_Hxy #include <cstdio> #define min(a,b) ((a)>(b)?(b): ...

  3. 【BZOJ1432】[ZJOI2009]Function(找规律)

    [BZOJ1432][ZJOI2009]Function(找规律) 题面 BZOJ 洛谷 题解 这...找找规律吧. #include<iostream> using namespace ...

  4. bzoj千题计划138:bzoj1432: [ZJOI2009]Function

    http://www.lydsy.com/JudgeOnline/problem.php?id=1432 http://blog.sina.com.cn/s/blog_86942b1401014bd2 ...

  5. BZOJ1432 [ZJOI2009]Function

    Description Input 一行两个整数n; k. Output 一行一个整数,表示n 个函数第k 层最少能由多少段组成. Sample Input 1 1 Sample Output 1 H ...

  6. 【构造】Bzoj1432[ZJOI2009]Function

    Description Input 一行两个整数n; k. Output 一行一个整数,表示n 个函数第k 层最少能由多少段组成. Sample Input 1 1 Sample Output 1   ...

  7. BZOJ1432: [ZJOI2009]Function(找规律)

    Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1523  Solved: 1128[Submit][Status][Discuss] Descriptio ...

  8. bzoj 1432 [ZJOI2009]Function 思想

    [bzoj1432][ZJOI2009]Function Description Input 一行两个整数n; k. Output 一行一个整数,表示n 个函数第k 层最少能由多少段组成. Sampl ...

  9. BZOJ 1432: [ZJOI2009]Function

    1432: [ZJOI2009]Function Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1046  Solved: 765[Submit][Sta ...

随机推荐

  1. vue-cli脚手架build目录中的karma.conf.js配置文件

    本文系统讲解vue-cli脚手架build目录中的karma.conf.js配置文件 这个配置文件是命令 npm run unit 的入口配置文件,主要用于单元测试 这条命令的内容如下 "c ...

  2. _tprintf(), printf(),wprintf() 与控制字符 %s 和 %S(Unicoe与GB2312))

    _tprintf() 是 printf() 和 wprintf() 的通用类型:如果定义了 _unicode,那么 _tprintf() 就会转换为 wprintf(),否则为 printf() . ...

  3. SqlServer——用户自定义函数

    在SQL Server中,用户不仅可以使用标准的内置函数,也可以使用自己定义的函数来实现一些特殊的功能.可以使用CREATE  FUNCTION 语句创建.在创建时需要注意:函数名在数据库中必须唯一, ...

  4. ClientDataSet + DataSetProvider + FDQuery 的bug

    ClientDataSet + DataSetProvider  +FDQuery 有 bug ClientDataSet + DataSetProvider  +ADOQuery正常. Client ...

  5. kvm iptables 3306端口

    # iptables -t nat -A PREROUTING -p TCP --dport 3306 -j DNAT --to-destination 192.168.122.102:3306# i ...

  6. C++深度解析教程学习笔记(2)C++中的引用

    1.C++中的引用 (1)变量名的回顾 ①变量是一段实际连续存储空间的别名,程序中通过变量来申请并命名存储空间 ②通过变量的名字可以使用存储空间.(变量的名字就是变量的值,&变量名是取地址操作 ...

  7. BigDecimal的equals与compareTo

    equals方法的话会不仅会比较值的大小,还会比较两个对象的精确度, compareTo方法则不会比较精确度,只比较数值的大小

  8. Mac系统下MySql下载MySQL5.7及详细安装流程

    一.在浏览器当中输入以下地址 https://dev.mysql.com/downloads/mysql/    二.进入以下界面:直接点击下面位置 ,选择跳过登录 点过这后直接下载. 三.下载完成后 ...

  9. SQLServer+.net 事务锁表问题

    最近操作Sqlserver遇到一个锁表问题.找了好久才搞明白原因和解决办法. 故障现象: 每次启动事务后,执行了删除或者修改操作以后,再执行查询操作就锁表. 解决过程: 1:最初以为SQLServer ...

  10. Blender 工具使用——模式切换

    Blender 工具使用--模式切换 制作骨架时 在物件模式(Object Mode)下使用鼠标右键选中一个骨架,按Tab键,可以切换为编辑模式(Edit Mode),按Ctrl + Tab可以进入骨 ...