题目链接

BZOJ4031

题解

第一眼:这不裸的矩阵树定理么

第二眼:这个模\(10^9\)是什么鬼嘛QAQ

想尝试递归求行列式,发现这是\(O(n!)\)的。。

想上高斯消元,却又处理不了逆元这个东西、、

无奈去翻题解,,,

发现可以用类似辗转相除法去消,而避免除法,,,

这样子依旧是每次一行减去另一行乘一个数,行列式不变

orz

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 105,maxm = 100005,INF = 1000000000,P = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int visx[maxn],A[maxn][maxn],n,m,N,id[maxn][maxn];
int X[4] = {0,0,1,-1},Y[4] = {-1,1,0,0};
char s[maxn][maxn];
int Gause(){
int tag = 1;
for (int i = 1; i < N; i++){
int j = i;
for (int k = i + 1; k < N; k++)
if (abs(A[k][i]) > abs(A[j][i])) j = k;
if (j != i){
for (int k = i; k < N; k++) swap(A[i][k],A[j][k]);
tag = -tag;
}
for (j = i + 1; j < N; j++){
while (A[j][i]){
int tmp = A[j][i] / A[i][i];
for (int k = i; k < N; k++)
A[j][k] = ((A[j][k] - 1ll * tmp * A[i][k] % P) % P + P) % P;
if (A[j][i]){
for (int k = i; k < N; k++)
swap(A[i][k],A[j][k]);
tag = -tag;
}
}
}
}
int re = 1;
for (int i = 1; i < N; i++)
re = 1ll * re * A[i][i] % P;
return (re * tag % P + P) % P;
}
int main(){
n = read(); m = read();
REP(i,n){
scanf("%s",s[i] + 1);
REP(j,m) if (s[i][j] == '.') id[i][j] = ++N;
}
REP(i,n) REP(j,m){
if (s[i][j] == '*') continue;
int nx,ny,u = id[i][j];
for (int k = 0; k < 4; k++){
nx = i + X[k];
ny = j + Y[k];
if (nx < 1 || ny < 1 || nx > n || ny > m || s[nx][ny] == '*') continue;
A[u][u]++;
A[u][id[nx][ny]] = -1;
}
}
printf("%d\n",Gause());
return 0;
}

BZOJ4031 [HEOI2015]小Z的房间 【矩阵树定理 + 高斯消元】的更多相关文章

  1. bzoj4031 [HEOI2015]小Z的房间——矩阵树定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4031 矩阵树定理的模板题(第一次的矩阵树定理~): 有点细节,放在注释里了. 代码如下: # ...

  2. 【bzoj4031】[HEOI2015]小Z的房间 矩阵树定理

    题目描述 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一 ...

  3. [HEOI2015]小Z的房间(矩阵树定理学习笔记)

    题目描述 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着. 你想要打通一 ...

  4. BZOJ 4031: [HEOI2015]小Z的房间 [矩阵树定理 行列式取模]

    http://www.lydsy.com/JudgeOnline/problem.php?id=4031 裸题........ 问题在于模数是$10^9$ 我们发现消元的目的是让一个地方为0 辗转相除 ...

  5. BZOJ 4031: [HEOI2015]小Z的房间 (矩阵树定理 板题)

    背结论 : 度-邻 CODE1 O(n3logn)O(n^3logn)O(n3logn) #include <bits/stdc++.h> using namespace std; typ ...

  6. [HEOI2015] 小Z的房间 - 矩阵树定理

    #include <bits/stdc++.h> using namespace std; #define int long long const int N = 105; const i ...

  7. bzoj 4031: 小Z的房间 矩阵树定理

    bzoj 4031: 小Z的房间 矩阵树定理 题目: 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时 ...

  8. LG4111/LOJ2122 「HEOI2015」小Z的房间 矩阵树定理

    问题描述 LG4111 题解 矩阵树定理板子题. \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; #defin ...

  9. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

随机推荐

  1. 【学时总结】◆学时·VIII◆ 树形DP

    ◆学时·VIII◆ 树形DP DP像猴子一样爬上了树……QwQ ◇ 算法概述 基于树的模型,由于树上没有环,满足DP的无后效性,可以充分发挥其强大统计以及计算答案的能力. 一般来说树形DP的状态定义有 ...

  2. 爬虫学习(十五)——json解析

    json与jsonpath 对象{}:jsonobject 对象:对象在js中表现为{}括起来的内容,数据结构为{key:value,key:value...}键值对的结构,在面向对象的结构中,key ...

  3. Python学习之三级菜单

    Python经典练习题 - 三级菜单 需求: 可依次选择进入各子菜单 可从任意一层往回退到上一层 可从任意一层退出程序 示例代码: # -*- coding: utf-8 -*- menu = { ' ...

  4. Java OOP——第八章 File IO

    1.文件:文件可认为是相关记录或放在一起的数据的集合: 2.File类:名命空间:java.io File对象即可表示文件,也可表示目录, 在程序中,一个File对象可以代表一个文件或目录, 利用他可 ...

  5. 原生js关闭窗口

    if (navigator.userAgent.indexOf("MSIE") > 0) { if (navigator.userAgent.indexOf("MS ...

  6. ethereum(以太坊)(二)--合约中属性和行为的访问权限

    pragma solidity ^0.4.0; contract Test{ /* 属性的访问权限 priveta public internal defualt internal interlnal ...

  7. tcl之过程/函数-proc

  8. exec族函数

    作用 在进程的创建上Unix采用了一个独特的方法,它将进程创建与加载一个新进程映象分离.这样的好处是有更多的余地对两种操作进行管理. 当我们创建了一个进程之后,通常将子进程替换成新的进程映象,这可以用 ...

  9. 1、spring boot入门

    1.Spring Boot 简介 简化Spring应用开发的一个框架: 整个Spring技术栈的一个大整合: J2EE开发的一站式解决方案: 2.微服务 2014,martin fowler 微服务: ...

  10. poj 1957 二分搜索

    题意:N个灯泡离地H_i,满足H1 = A ,Hi = (Hi-1 + Hi+1)/2 – 1,HN = B ,求最小B. 思路: 只要二分第二个灯泡的高度就可以推出全部灯泡的高度 如果hi<0 ...