题目描述

小明今天得到一个跳舞毯游戏程序Dance。游戏每次连续出N个移动的“箭头”,箭头依次标号为1到N,并且的相应的分数S[1..N]。如果你能“踏中”第i号箭头,你将获得相应的分数S[i];否则将被扣除相应的分数。

另外,游戏还有一个累计奖励机制:如果踏准次数累计达到T,并且是在踏中第i个箭头达到的,则将得到B[i]的奖励分数,累计也将清零,重新开始。

例如:N=6,T=3,相应的S和B分别为{1,2,3,4,5,6}、{0,0,4,7,9,10},如果小明踏中所有箭头,则得分为:(1+2+3+4)+(4+5+6+10)=35

小明是个Dance高手,可以踏中他想踏中的任意一个箭头。但他发现,根据给定的N,T,S,B,踏中所有的箭头不一定能得最高分,小明很想知道最高能得多少分,你能帮助小明计算一下最多可得多少分吗?

输入输出格式

输入格式:

第一行两个整数N和T。

第二行N个整数,为S的相应分数。

第三行也有N个整数,为B的相应分数。

输出格式:

一个整数,可得到的最高分数。

输入输出样例

输入样例#1:

6 3
1 2 3 4 5 6
1 1 1 20 1 1
输出样例#1:

39

说明

【样例解释】

跳过第一个,扣1分,连踩3个,得9分,并获得附加分20分,之后再连踩2个,共39分。

【数据范围】

对于20%的数据0≤N,T≤100;

对于100%的数据0≤N,T≤5000;

S和B各有N个数,所有分数为[0,10000]之间的整数。

Solution:

  本题不难。。。

  第一眼一味可以随便走,那扣分的条件不就多余了吗?后面发现是从$1$开始依次到$n$,那么就是个线性的,直接二维枚举就好了。

  设$f[i][j]$表示第$j$次在第$i$个位置时的最大值,初始化时$f[i][0]=f[i-1][0]-a[i]$(表示在不动到了第$i$个位置时的值从上一个位置转移过来,且要扣分),然后状态转移方程就显而易见了:

  $f[i][j]=max(f[i-1][j-1]+a[i],f[i-1][j]-a[i])$,当$j\;mod\;m==0$时,转移时就是$f[i][j]=max(f[i-1][j]+a[i],f[i-1][j-1]+a[i]+b[i])$。

  最后答案就是所有状态中的最大值拉。

代码:

#include<bits/stdc++.h>
#define il inline
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)>(b)?(b):(a))
using namespace std;
const int N=;
int n,m,a[N],b[N],f[N][N],ans=-; il int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return a;
} int main(){
n=gi(),m=gi();
For(i,,n)a[i]=gi(),f[i][]=f[i-][]-a[i];
For(i,,n)b[i]=gi();
For(i,,n){
For(j,,i){
f[i][j]=Max(f[i-][j-]+a[i],f[i-][j]-a[i]);
if(j%m==)f[i][j]=Max(f[i-][j]-a[i],f[i-][j-]+b[i]+a[i]);
ans=Max(ans,f[i][j]);
}
}
cout<<ans;
return ;
}

P2029 跳舞的更多相关文章

  1. 洛谷P2029 跳舞

    P2029 跳舞 题目描述 小明今天得到一个跳舞毯游戏程序Dance.游戏每次连续出N个移动的“箭头”,箭头依次标号为1到N,并且的相应的分数S[1..N].如果你能“踏中”第i号箭头,你将获得相应的 ...

  2. $Luogu P2029$ 跳舞 题解

    一道不是十分水的\(dp\). 首先我们考虑\(dp\)方程的构造.起初我定义的状态是\(dp_{i,j}\)表示前\(i\)个格子,总共跳了\(j\)次的最大得分.但事实上它并不可以转移,因为我们不 ...

  3. 2018.08.16 洛谷P2029 跳舞(线性dp)

    传送门 简单的线性dp" role="presentation" style="position: relative;">dpdp. 直接推一推 ...

  4. 洛谷P2029跳舞

    题目 DP, 用的\(dp[i][j]\)表示\(i\)之前的数选了\(j\)个得到的最大结果,然后状态转移方程应该是 \[if (j \% t == 0)~~dp[i][j] = max(dp[i] ...

  5. DP擎天

    DP! 黄题: 洛谷P2101 命运石之门的选择 假装是DP(分治 + ST表) CF 982C Cut 'em all! 树形贪心 洛谷P1020 导弹拦截 单调队列水题 绿题: 洛谷P1594 护 ...

  6. 动态规划dp专题练习

    貌似开坑还挺好玩的...开一个来玩玩=v=... 正好自己dp不是很熟悉,就开个坑来练练吧...先练个50题?小目标... 好像有点多啊QAQ 既然是开坑,之前写的都不要了! 50/50 1.洛谷P3 ...

  7. Bzoj1305 [CQOI2009]dance跳舞

    Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 2925  Solved: 1221 Description 一次舞会有n个男孩和n个女孩.每首曲子开始时 ...

  8. BZOJ 1305: [CQOI2009]dance跳舞 二分+最大流

    1305: [CQOI2009]dance跳舞 Description 一次舞会有n个男孩和n个女孩.每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞.每个男孩都不会和同一个女孩跳两首(或更多)舞曲 ...

  9. BZOJ-1305 dance跳舞 建图+最大流+二分判定

    跟随YveH的脚步又做了道网络流...%%% 1305: [CQOI2009]dance跳舞 Time Limit: 5 Sec Memory Limit: 162 MB Submit: 2119 S ...

随机推荐

  1. Server_Tomcat

    1 Tomcat概述 Tomcat服务器由Apache提供,开源免费.由于Sun和其他公司参与到了Tomcat的开发中,所以最新的JSP/Servlet规范总是能在Tomcat中体现出来.当前最新版本 ...

  2. java基础 UDP通信 user datagram protocol 用户数据豆协议 TCP transmission control protocol 传输控制协议 多线程TCP

    无连接通信 UDP 客户端 package com.swift.test; import java.io.IOException; import java.net.DatagramPacket; im ...

  3. 重新认识下数组的concat方法

    最近在学习react,看官方文档的时候,有一个例子中的一句话让我困惑.就是讲todoList的例子 concat不是连接数组的吗?看了一下concat的介绍 数组虽然是对象类型,但是对象毕竟不是数组啊 ...

  4. mysql 1055 的错误

    1.Err1055,出现这个问题往往是在执行sql语句时候,在最后一行会出现这个问题. [Err] 1055 - Expression #1 of ORDER BY clause is not in ...

  5. IntelliJ IDEA 12 创建Web项目 教程 超详细版【转】

    IntelliJ IDEA 12 新版本发布 第一时间去官网看了下  黑色的主题 很给力 大体使用了下  对于一开始就是用eclipse的童鞋们 估计很难从eclipse中走出来 当然 我也很艰难的走 ...

  6. (转)Clang 比 GCC 编译器好在哪里?

    编译速度更快.编译产出更小.出错提示更友好.尤其是在比较极端的情况下.两年多前曾经写过一个Scheme解释器,词法分析和语法解析部分大约2000行,用的是Boost.Spirit--一个重度依赖C++ ...

  7. PHP表单安全过滤和防注入 htmlspecialchars() 和test_input()

    什么是 htmlspecialchars() 函数? htmlspecialchars() 函数把特殊字符转换为 HTML 实体.这意味着 < 和 > 之类的 HTML 字符会被替换为 & ...

  8. 利用pandas和numpy计算表中每一列的均值

    import numpy as np import pandas as pd df = pd.DataFrame({'var1':np.random.rand(100), #生成100个0到1之间的随 ...

  9. Partitioning by Palindromes UVA - 11584 简单dp

    题目:题目链接 思路:预处理出l到r为回文串的子串,然后如果j到i为回文串,dp[i] = min(dp[i], dp[j] + 1) AC代码: #include <iostream> ...

  10. scrapy进行分布式爬虫

    今天,参照崔庆才老师的爬虫实战课程,实践了一下分布式爬虫,并没有之前想象的那么神秘,其实非常的简单,相信你看过这篇文章后,不出一小时,便可以动手完成一个分布式爬虫! 1.分布式爬虫原理 首先我们来看一 ...