题目大意:有一个$a\times b$的矩阵,求一个$n\times n$的矩阵,使该区域中的极差最小。

题解:二维$ST$表,每一个点试一下是不是左上角就行了

卡点:1.用了一份考试时候写的二维$ST$表,是矩阵的,然后$MLE$

  2.改了一下,$i,k$狂写错

C++ Code:

#include <cstdio>
#define maxn 1005
int S[maxn][maxn][11], M[maxn][maxn][11];
int n, m, p, K, P;
int LG[maxn], pw[maxn];
inline int max(int a, int b) {return a > b ? a : b;}
inline int min(int a, int b) {return a < b ? a : b;}
inline int getS(int a, int b) {
int c = a + p, d = b + p;
int l = max(S[a][b][K], S[c - P][b][K]),
r = max(S[a][d - P][K], S[c - P][d - P][K]);
return max(l, r);
}
inline int getM(int a, int b) {
int c = a + p, d = b + p;
int l = min(M[a][b][K], M[c - P][b][K]),
r = min(M[a][d - P][K], M[c - P][d - P][K]);
return min(l, r);
}
int main() {
scanf("%d%d%d", &n, &m, &p);
for (register int i = 1; i <= n; i++) {
for (register int j = 1; j <= m; j++) scanf("%d", &S[i][j][0]), M[i][j][0] = S[i][j][0];
}
LG[0] = -1; for (int i = 1; i < maxn; i++) LG[i] = LG[i >> 1] + 1; K = LG[p];
pw[0] = 1; for (int i = 1; i < 100; i++) pw[i] = pw[i - 1] * 2ll % 20040826; P = pw[K];
for (register int k = 1; k < 11; k++) {
for (register int i = 1; i <= n; i++) {
for (register int j = 1; j <= m; j++) {
S[i][j][k] = max(max(S[i][j][k - 1], S[i][min(m, j + pw[k - 1])][k - 1]),
max(S[min(n, i + pw[k - 1])][j][k - 1], S[min(n, i + pw[k - 1])][min(m, j + pw[k - 1])][k - 1]));
M[i][j][k] = min(min(M[i][j][k - 1], M[i][min(m, j + pw[k - 1])][k - 1]),
min(M[min(n, i + pw[k - 1])][j][k - 1], M[min(n, i + pw[k - 1])][min(m, j + pw[k - 1])][k - 1]));
}
}
}
int ans = 0x3f3f3f3f;
for (int i = 1; i <= n - p + 1; i++) {
for (int j = 1; j <= m - p + 1; j++) {
ans = min(ans, getS(i, j) - getM(i, j));
}
}
printf("%d\n", ans);
return 0;
}

  

[洛谷P2216][HAOI2007]理想的正方形的更多相关文章

  1. 洛谷 P2216 [HAOI2007]理想的正方形

    P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...

  2. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

  3. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  4. 洛谷P2216 HAOI2007 理想的正方形 (单调队列)

    题目就是要求在n*m的矩形中找出一个k*k的正方形(理想正方形),使得这个正方形内最值之差最小(就是要维护最大值和最小值),显然我们可以用单调队列维护. 但是二维平面上单调队列怎么用? 我们先对行处理 ...

  5. 【DP】【单调队列】洛谷 P2216 [HAOI2007]理想的正方形 题解

        算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 ...

  6. 洛谷 P2216 [HAOI2007]理想正方形

    洛谷 巨说这是一道单调队列好题,但是我并不是用单调队列做的诶. 如果往最暴力的方向去想,肯定是\(n^3\)的\(dp\)了. \(f[i][j][k]\)代表当前正方形的左上角定点是\((i,j)\ ...

  7. BZOJ1047或洛谷2216 [HAOI2007]理想的正方形

    BZOJ原题链接 洛谷原题链接 显然可以用数据结构或\(ST\)表或单调队列来维护最值. 这里采用单调队列来维护. 先用单调队列维护每一行的最大值和最小值,区间长为正方形长度. 再用单调队列维护之前维 ...

  8. 洛谷 2216 [HAOI2007]理想的正方形

    题目戳这里 一句话题意 给你一个a×b的矩形,求一个n×n的子矩阵,矩阵里面的最大值和最小值之差最小. Solution 这个题目许多大佬都是单调队列,但是我不是很会,只好用了比较傻逼的方法: 首先我 ...

  9. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

随机推荐

  1. Objective-c 单例设计模式

    Objective-c 单例设计模式 一.什么是单例模式:(Singleton)      单例模式的意图是是的类的对象成为系统中唯一的实例,提供一个访问点,供客户类共享资源.   二.什么情况下使用 ...

  2. LunaSchedule记录

    博客访问量突破10000!!!(值得高兴一下 用一学期超级课程表,被50+M的内存占用,巨慢的加载速度给弄烦了,就自己开发了一款课程表管理程式 添加日历订阅,自动导入到系统日历,无需安装任何app L ...

  3. avalon ms-repeat avalon1

    工作原因要用到avalon二次开发, 但是看了下以前的avalon版本是1,现在大多数都是2版本了吧,,所以很多文档不好找,但是大多数还是好用的 ms-repeat 循环当前赋值的, ms-repea ...

  4. 深入理解java虚拟机学习笔记(二)垃圾回收策略

    上篇文章介绍了JVM内存模型的相关知识,其实还有些内容可以更深入的介绍下,比如运行时常量池的动态插入,直接内存等,后期抽空再完善下上篇博客,今天来介绍下JVM中的一些垃圾回收策略.        一. ...

  5. datatables 给字段设置默认值,屏蔽没有字段的错误

    我们返回的数据不能保证都是正常的,可能包含 null ,显然这个对于最终用户来说是不友好的,那么我们可以这么处理 先有如下数据格式: //示例数据 { data:[ {"id":1 ...

  6. FreeBSD--常用命令

    FreeBSD常用命令   查看网络流量 a.systat -if 1 (1表示1s刷新屏幕一次) b.netstat 1 # Traffic 流量 peak 峰值 average 平均值 查看进程p ...

  7. PHP 基础知识总结

    PHP 代表 PHP: Hypertext Preprocessor PHP 文件可包含文本.HTML.JavaScript代码和 PHP 代码 PHP 代码在服务器上执行,结果以纯 HTML 形式返 ...

  8. C++基础 const

    1. C中的const C中const变量只是只读变量,有自己存储空间.可能被存放在 栈.堆.数据段,所以可以修改. 2. C++中const 可能分配空间,也可能不分配空间. 当 const 为全局 ...

  9. 关于修改zeppelin的代码显示

    最近我在修改zeppelin(0.7版本)的源码相关的知识,目前做的工作是修改zeppelin的代码,为了让zeppelin可以可以在页面中显示数据集,并且在其数据库中存储式真实的路径1.如果我们要运 ...

  10. Java实现系统目录实时监听更新。

    SDK1.7新增的nio WatchService能完美解决这个问题.美中不足是如果部署在window系统下会出现莫名其妙的文件夹占用异常导致子目录监听失效,linux下则完美运行.这个问题着实让人头 ...