【BZOJ3930】[CQOI2015] 选数(容斥)
大致题意: 让你求出在区间\([L,H]\)间选择\(n\)个数时,有多少种方案使其\(gcd\)为\(K\)。
容斥
原以为是一道可怕的莫比乌斯反演题。
但是,数据范围中有这样一句话:\(H-L\le10^5\)。
于是,它就变成了一道可以用容斥乱搞的题目。
大致思路
首先,我们将\(L\)与\(H\)分别除以\(K\)(注意\(L\)向上取整,\(H\)向下取整,这应该还是比较好理解的)。
然后我们在\([1,H-L]\)之间枚举\(i\),假设\(x\)表示\([L,H]\)区间内选出\(i\)的倍数的个数,则选择\(n\)个数使得这些数全部含有约数\(i\)的方案数应为\(x^n-x\)。
那么如何求出最大公约数是\(i\)的方案数呢?
很简单,根据容斥原理,全是\(i\)倍数的方案数中多余的方案数应为最大公约数为\(2i,3i,4i,...\)的方案数,所以我们可以倒着求一遍,得出答案。
具体实现详见代码吧。
代码
#include<bits/stdc++.h>
#define MOD 1000000007
#define Inc(x,y) ((x+=(y))>=MOD&&(x-=MOD))
#define Dec(x,y) ((x-=(y))<0&&(x+=MOD))
#define Delta 100000
using namespace std;
int n,k,l,r,f[Delta+5];
inline int quick_pow(int x,int y,register int res=1)//快速幂
{
for(;y;x=1LL*x*x%MOD,y>>=1) if(y&1) res=1LL*res*x%MOD;
return res;
}
int main()
{
register int i,j,x,y;
for(scanf("%d%d%d%d",&n,&k,&l,&r),(l+=k-1)/=k,r/=k,i=1;i<=r-l;++i) x=(l+i-1)/i,y=r/i,f[i]=quick_pow(y-x+1,n),Dec(f[i],y-x+1);//求出含有约数i的方案数f[i]
for(i=r-l;i;--i) for(j=i<<1;j<=r-l;j+=i) Dec(f[i],f[j]);//容斥,求出gcd为i的方案数f[i]
return printf("%d",f[1]+(l==1)),0;//特判l=1的情况,将f加1
}
【BZOJ3930】[CQOI2015] 选数(容斥)的更多相关文章
- (noip模拟十七)【BZOJ3930】[CQOI2015]选数-容斥水法
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj3930[CQOI2015]选数 容斥原理
3930: [CQOI2015]选数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1383 Solved: 669[Submit][Status] ...
- BZOJ3930 [CQOI2015]选数 【容斥】
题目 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研 ...
- BZOJ3930: [CQOI2015]选数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...
- BZOJ3930 [CQOI2015]选数【莫比乌斯反演】
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- 【BZOJ3930】选数(莫比乌斯反演,杜教筛)
[BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...
- 【BZOJ3930】选数
[BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...
- 洛谷 [CQOI2015]选数 解题报告
[CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...
随机推荐
- Machine Learning-KNN
思路:如果一个样本在特征空间中的k个最相近的样本中大多数属于某个类别,则该样本也属于该类别: 这段话中涉及到KNN的三要素:K.距离度量.决策规则 K:KNN的算法的结果很大程度取决于K值的选择: I ...
- bzoj4200: [Noi2015]小园丁与老司机(可行流+dp)
传送门 这该死的码农题…… 题解在这儿->这里 //minamoto #include<iostream> #include<cstdio> #include<cs ...
- 在 .NET Framework 中使用 StringBuilder 类
在 .NET Framework 中使用 StringBuilder 类 String 对象是不可变的.每次使用 System.String 类中的一个方法时,都要在内存中创建一个新的字符串对象,这就 ...
- Bitbucekt Reference
Bitbucket Server installation guide https://confluence.atlassian.com/bitbucketserver/bitbucket-serve ...
- jmeter如何设置全局变量以及调用方法
当遇到如跨线程组调用变量等情况,需要设置全局变量. 1.打开函数助手 输入需要的值然后点击生成按钮,或者直接使用${__setProperty(newuserid,${userid},)}的格式 设置 ...
- 学霸笔记系列 - Python Selenium项目实战(一)—— 怎么去验证一个按钮是启用的(可点击)?
Q: 使用 Python Selenium WebDriver 怎么去验证一个按钮是启用的(可点击)? A:Selenium WebDriver API 里面给出了解决方法is_enabled() 使 ...
- maven插件: shade, assembly
shade插件的作用: 通过版本的exclution无法解决jar冲突的问题, 解决方案是把依赖的包打到本model的jar中,打包的时候由mvn plugin自动修改代码中的依赖jar包名 relo ...
- 【ACM】喷水装置
喷水装置(一) 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 现有一块草坪,长为20米,宽为2米,要在横中心线上放置半径为Ri的喷水装置,每个喷水装置的效果都会让以 ...
- E. Beautiful Subarrays 字典树
http://codeforces.com/contest/665/problem/E 给定一个序列,问其中有多少个区间,所有数字异或起来 >= k 看到异或,就应该想到异或的性质,A^B^B ...
- 记录下laravel 5.2的auth/logout路由工作不正常的问题