Python 装饰器初探
Python 装饰器初探
在谈及Python的时候,装饰器一直就是道绕不过去的坎。面试的时候,也经常会被问及装饰器的相关知识。总感觉自己的理解很浅显,不够深刻。是时候做出改变,对Python的装饰器做个全面的了解了。
1. 函数装饰器
直接上代码,看看装饰器到底干了些什么?
from functools import wraps
import time
def time_cost(func):
@wraps(func)
def f(*args, **kwargs):
start_time = time.time()
func(*args, **kwargs)
end_time = time.time()
print(end_time - start_time)
return f
@time_cost
def test(*args, **kwargs):
time.sleep(1.0)
if __name__ == "__main__":
test()
上面的Python代码,运行后,会给出test函数的执行时间。代码的执行顺序大概如下,首先是将test作为值传递给time_cost函数,返回函数f,然后再调用f,这是带有time_cost装饰器的test函数的大致执行过程。
从中,不难看出,即使不使用装饰器符号,我们利用Python的语言特性,也能达成上述目的。用装饰器符号的好处是简化了代码,增加了代码的可读性。
这是一段非常简单的对函数使用装饰器的Python代码。等等,@wraps(func)
是什么鬼?悄悄干了什么哇?
我们稍微修改下上述代码,结果如下:
from functools import wraps
import time
def time_cost(func):
def f(*args, **kwargs):
start_time = time.time()
func(*args, **kwargs)
end_time = time.time()
print(end_time - start_time)
print('hello world')
return f
@time_cost
def test(*args, **kwargs):
time.sleep(1.0)
if __name__ == "__main__":
print(test.__name__)
发现输出了hello world
,同时输出test.__name__
,居然变成了f
,并不是我们预期的test
。根据这样的输出结果,我们不难得出,其实被装饰器time_cost
修饰过的函数test本质上已经等同于time_cost(test)
,此时访问test.__name__
实际上访问的是time_cost(test).__name__
,得到的当然就是f
啦。当我们加上@wraps(func)
,此时test.__name__
变成了test
。
下面介绍带参数的装饰器,更加难了。在谈论带参数的装饰器之间,首先得引入一个概念,那就”闭包“。如果你以前用过脚本语言,比如JavaScript,那么一定会很熟悉闭包这个概念。下面是一个闭包样例
def add(a):
def wrapper(c):
return a + c
return wrapper
if __name__ == "__main__":
add3 = add(3)
add9 = add(9)
print(add3(4) == 7)
print(add9(1) == 10)
从中可以看出,在调用add3的时候,wrapper内部还可以访问到a的值,这就是闭包的作用。理解了闭包,理解带参数的装饰器就容易多了。
from functools import wraps
def logging(level):
def outer_wrapper(func):
@wraps(func)
def inner_wrapper(*args, **kwargs):
print("[{level}]: enter function {func}()".format(
level=level,
func=func.__name__))
return func(*args, **kwargs)
return inner_wrapper
return outer_wrapper
@logging(level='WARN')
def show(msg):
print('message:{}'.format(msg))
if __name__ == "__main__":
show('hello world!')
上面给出了一个带参数装饰器的示例。根据我们前面的铺垫,我们不难分析得出,上面的执行过程是logging(level='WARN')->outer_wrapper(show)->inner_wrapper()
,所以我们可以理解,在被logging修饰后的show其实就是logging(level='WARN')(show)
,执行show('hello world!')
其实就是在执行logging(level='WARN')(show)()
。注意与不带参数的装饰器的区别,带参数的装饰器比不带参数的装饰器多套了一层,对应的装饰器也有了调用。因为在使用装饰器的时候,带了括号,所以装饰器本身多套了一层。被装饰器修饰过的函数在被调用的时候,实际上执行的是装饰器最内层的函数,其余层的在函数被修饰时就已经执行了。
是不是觉得非常自然?对的,我以前对装饰器的理解也就停留在不带参数的装饰器这一深度。
2. 基于类实现的装饰器
依然先上代码
from functools import wraps
import time
class time_cost:
def __init__(self, func):
self.func = func
def __call__(self, *args, **kwargs):
start_time = time.time()
result = self.func(*args, **kwargs)
end_time = time.time()
print(end_time - start_time)
return result
@time_cost
def test(*args, **kwargs):
time.sleep(1.0)
if __name__ == "__main__":
test()
上面的基于类实现的不带参数的装饰器实际上利用的是Python中的可调用对象特性,凡是实现了__call__
方法的类的实例是可以被调用的。因此被time_cost
修饰过的test
函数本质上已经变成了time_cost类的实例了。调用test方法的时候,实际上执行的是__call__
方法。
下面介绍稍微复杂一点的基于类实现的带有参数的装饰器。
from functools import wraps
class logging:
def __init__(self, level):
self.level = level
def __call__(self, func):
@wraps(func)
def wrapper(*args, **kwargs):
print("[{level}]: enter function {func}()".format(
level=self.level,
func=func.__name__))
return func(*args, **kwargs)
return wrapper
@logging(level='WARN')
def show(msg):
print('message:{}'.format(msg))
if __name__ == "__main__":
show('hello world!')
不同于基于类实现的不带参数的装饰器,基于类实现的带参数的装饰器在__call__
里面多了一层wrapper。被装饰器修饰的show方法本质上是logging(level='WARN')(show)
,此时调用show方法,实际上执行的是wrapper方法。
现在看来,其实装饰器也没有很复杂,在实际的项目中用装饰器可以带来很大便利。
Python 装饰器初探的更多相关文章
- python装饰器初探
一.含有一个装饰器 #encoding: utf-8 ############含有一个装饰器######### def outer(func): def inner(*args, **kwargs): ...
- 关于python装饰器
关于python装饰器,不是系统的介绍,只是说一下某些问题 1 首先了解变量作用于非常重要 2 其次要了解闭包 def logger(func): def inner(*args, **kwargs) ...
- python装饰器通俗易懂的解释!
1.python装饰器 刚刚接触python的装饰器,简直懵逼了,直接不懂什么意思啊有木有,自己都忘了走了多少遍Debug,查了多少遍资料,猜有点点开始明白了.总结了一下解释得比较好的,通俗易懂的来说 ...
- Python 装饰器学习
Python装饰器学习(九步入门) 这是在Python学习小组上介绍的内容,现学现卖.多练习是好的学习方式. 第一步:最简单的函数,准备附加额外功能 1 2 3 4 5 6 7 8 # -*- c ...
- python 装饰器修改调整函数参数
简单记录一下利用python装饰器来调整函数的方法.现在有个需求:参数line范围为1-16,要求把9-16的范围转化为1-8,即9对应1,10对应2,...,16对应8. 下面是例子: def fo ...
- python 装饰器学习(decorator)
最近看到有个装饰器的例子,没看懂, #!/usr/bin/python class decorator(object): def __init__(self,f): print "initi ...
- Python装饰器详解
python中的装饰器是一个用得非常多的东西,我们可以把一些特定的方法.通用的方法写成一个个装饰器,这就为调用这些方法提供一个非常大的便利,如此提高我们代码的可读性以及简洁性,以及可扩展性. 在学习p ...
- 关于python装饰器(Decorators)最底层理解的一句话
一个decorator只是一个带有一个函数作为参数并返回一个替换函数的闭包. http://www.xxx.com/html/2016/pythonhexinbiancheng_0718/1044.h ...
- Python装饰器由浅入深
装饰器的功能在很多语言中都有,名字也不尽相同,其实它体现的是一种设计模式,强调的是开放封闭原则,更多的用于后期功能升级而不是编写新的代码.装饰器不光能装饰函数,也能装饰其他的对象,比如类,但通常,我们 ...
随机推荐
- 你视为意见领袖的大 V,可能只是个僵尸号
今日导读 “高手在民间”这句话诚不欺我.互联网普及之后,民间大神在各大论坛如雨后春笋般涌现,忽而指点江山,笑谈国际风云,忽而算无遗策,狙击股市庄家,亦或退而求其次,美妆美食美颜,誓要带领少男少女冲在时 ...
- jdk8环境变量 jdk8图解安装 java8安装
JDK8 是JDK的最新版本,加入了很多新特性,如果我们要使用,需要下载安装: JDK8在windows xp下安装有点问题,所以在WIN7下安装 WIN7操作系统有32位和64位,分别要下载对应的J ...
- python-列表常用功能介绍
一.列表(list) 1.定义列表 names = [] #定义空列表 names = ['a','b','c'] #定义非空列表 2.访问列表中元素 >>> names = ['a ...
- html css javascript 知识点总结 bom js 操作标签 文本 节点 表格各行变色 悬停变色 省市联动 正则
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- django+xadmin在线教育平台(十四)
7-1 django templates模板继承1 机构可以筛选类别 机构可以根据所在地区进行分类 右侧我要学习功能: form表单提交 右下:授课机构排名 页面头部与底部为全局头和全局底部. Dja ...
- LVM(扩展)
LVM(扩展)======================== [root@aminglinux newdir]# fdisk -l /dev/sdb 磁盘 /dev/sdb:10.7 GB, 107 ...
- zabbix运维监控平台
zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案. zabbix能监视各种网络参数,保证服务器系统的安全运营:并提供灵活的通知机制以让系统管理员快速定位/解决 ...
- (转)Clang 比 GCC 编译器好在哪里?
编译速度更快.编译产出更小.出错提示更友好.尤其是在比较极端的情况下.两年多前曾经写过一个Scheme解释器,词法分析和语法解析部分大约2000行,用的是Boost.Spirit--一个重度依赖C++ ...
- yii自定义行为组件(简介版)
yii2 给框架底层预定义事件自定义处理程序. 1. common\config\main.php 修改配置文件添加 'as behaviors' => 'backend\behavior ...
- 【Sklearn系列】使用Sklearn进行数据预处理
这篇文章主要讲解使用Sklearn进行数据预处理,我们使用Kaggle中泰坦尼克号事件的数据作为样本. 读取数据并创建数据表格,查看数据相关信息 import pandas as pd import ...