one-stage检测算法,其不需要region proposal阶段,直接产生物体的类别概率和位置坐标值,经过单次检测即可直接得到最终的检测结果,因此有着更快的检测速度,比较典型的算法如YOLO,SSD,Retina-Net。

4、SSD(2016)

  SSD结合了YOLO中的回归思想和Faster-RCNN中的Anchor机制,使用全图各个位置的多尺度区域特征进行回归,既保持了YOLO速度快的特性,也保证了窗口预测的跟Faster-RCNN一样比较精准。

  SSD的核心是在特征图上采用卷积核来预测一系列Default Bounding Boxes的类别、坐标偏移。为了提高检测准确率,SSD在不同尺度的特征图(5个)上进行预测。

  

模型设计:

(1)采用多尺度特征图用于检测

  所谓多尺度采用大小不同的特征图,CNN网络一般前面的特征图比较大,后面会逐渐采用stride=2的卷积或者pool来降低特征图大小,利用多个尺度图来做检测,比较大的特征图来用来检测相对较小的目标,而小的特征图负责检测大目标。

(2)采用卷积进行检测

  SSD直接采用卷积对不同的特征图来进行提取检测结果。对于形状为m*m*p的特征图,只需要采用 3*3* p这样比较小的卷积核得到检测值。减少参数量。

(3)设置先验框

  SSD借鉴了Faster R-CNN中anchor的理念,每个单元设置尺度或者长宽比不同的先验框,预测的边界框(bounding boxes)是以这些先验框为基准的,在一定程度上减少训练难度。

训练技巧:

(1)先验框匹配

  在训练过程中,首先要确定训练图片中的ground truth(真实目标)与哪个先验框来进行匹配,与之匹配的先验框所对应的边界框将负责预测它。

  SSD的先验框与ground truth的匹配原则主要有两点。首先,对于图片中每个ground truth,找到与其IOU最大的先验框,该先验框与其匹配。第二个原则是:对于剩余的未匹配先验框,若某个ground truth的 大于某个阈值(一般是0.5),那么该先验框也与这个ground truth进行匹配。

  为了保证正负样本尽量平衡,SSD采用了hard negative mining,就是对负样本进行抽样,抽样时按照置信度误差(预测背景的置信度越小,误差越大)进行降序排列,选取误差的较大的top-k作为训练的负样本,以保证正负样本比例接近1:3。

(2)损失函数

  与Faster-RCNN中的RPN是一样的,不过RPN是预测Box里面有Object或者没有,没有分类,SSD直接用的Softmax分类。Location的损失,还是一样,都是用Predict box和Default Box/Anchor的差 与Ground Truth Box和Default Box/Anchor的差进行对比,求损失。

  损失函数定义为位置误差(locatization loss, loc)与置信度误差(confidence loss, conf)的加权和。对于位置误差,其采用Smooth L1 loss,对于置信度误差,其采用softmax loss。

  

(3)对每一张特征图,按照不同的大小(Scale) 和长宽比(Ratio)生成生成k个默认框(Default Boxes)

(4)数据扩增

  主要采用的技术有水平翻转(horizontal flip),随机裁剪加颜色扭曲(random crop & color distortion),随机采集块域(Randomly sample a patch)(获取小目标训练样本)

  • 数据扩增技术很重要,对于mAP的提升很大;
  • 使用不同长宽比的先验框可以得到更好的结果;
  • 采用多尺度的特征图用于检测也是至关重要的。

5、DSSD(2017)

  最大的贡献,在常用的目标检测算法中加入上下文信息。

  SSD算法对小目标不够鲁棒的最主要的原因是浅层feature map的表征能力不够强。DSSD就使用了更好的基础网络(ResNet-101)和Deconvolution层,skip连接来给浅层feature map更好的表征能力。

   

6、RetinaNet(2017)

  提出Single stage detector不好的原因完全在于:

  1. 极度不平衡的正负样本比例: anchor近似于sliding window的方式会使正负样本接近1000:1,而且绝大部分负样本都是easy example,这就导致下面一个问题:
  2. gradient被easy example dominant的问题:往往这些easy example虽然loss很低,但由于数 量众多,对于loss依旧有很大贡献,从而导致收敛到不够好的一个结果。

  作者提出了一个新的one-stage的检测器RetinaNet,达到了速度和精度很好地trade-off。使用改进的损失函数Focal Loss。

  Focal Loss从交叉熵损失而来。二分类的交叉熵损失如下:

 

参考博客:http://lanbing510.info/2017/08/28/YOLO-SSD.html

目标检测 — one-stage检测(二)的更多相关文章

  1. 带你读AI论文丨用于目标检测的高斯检测框与ProbIoU

    摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection&g ...

  2. 运动检测(前景检测)之(二)混合高斯模型GMM

    运动检测(前景检测)之(二)混合高斯模型GMM zouxy09@qq.com http://blog.csdn.net/zouxy09 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新 ...

  3. 图片人脸检测——OpenCV版(二)

    图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 往期目录 视频人脸检测——Dlib版(六)OpenCV添加中文(五)图片人脸检测——Dlib版(四 ...

  4. 目标检测之单步检测(Single Shot detectors)

    目标检测之单步检测(Single Shot detectors) 前言 像RCNN,fast RCNN,faster RCNN,这类检测方法都需要先通过一些方法得到候选区域,然后对这些候选区使用高质量 ...

  5. 基于PySpark的网络服务异常检测系统 阶段总结(二)

    在上篇博文中介绍了网络服务异常检测的大概,本篇将详细介绍SVDD和Isolation Forest这两种算法 1. SVDD算法 SVDD的英文全称是Support Vector Data Descr ...

  6. JavaScript浏览器检测之客户端检测

    客户端检测一共分为三种,分别为:能力检测.怪癖检测和用户代理检测,通过这三种检测方案,我们可以充分的了解当前浏览器所处系统.所支持的语法.所具有的特殊性能. 一.能力检测: 能力检测又称作为特性检测, ...

  7. OPENCV图像特征点检测与FAST检测算法

    前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ...

  8. 离群点检测与序列数据异常检测以及异常检测大杀器-iForest

    1. 异常检测简介 异常检测,它的任务是发现与大部分其他对象不同的对象,我们称为异常对象.异常检测算法已经广泛应用于电信.互联网和信用卡的诈骗检测.贷款审批.电子商务.网络入侵和天气预报等领域.这些异 ...

  9. kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归

    使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异 ...

  10. unity3d 赛车游戏——复位点检测优化、反向检测、圈数检测、赛道长度计算

    接着上一篇文章说 因为代码简短且思路简单 所以我就把这几个功能汇总为一篇文章 因为我之前就是做游戏外挂的 经过验证核实,**飞车的复位点检测.圈数检测就是以下的方法实现的 至于反向检测和赛道长度计算, ...

随机推荐

  1. 解决UISlider滑块不灵敏

    由于UI给的thumbImage图片过小,默认UISlider开始拖动的手势范围只有thumbImage的大小之内. 为了解决这个问题需要创建一个子类继承于UISlider.重写其中的方法: - (C ...

  2. 《TomCat与Java Web开发技术详解》(第二版) 第六章节对应CD附带的helloapp无法启动的问题解决

    首先记录一下如何解决此章节CD中附带的helloapp无法启动的问题 我用的tomcat版本是:7.0.47:为了便于控制,针对此章节的helloapp,我在tomcat/conf/Catalina/ ...

  3. 【转】【Mac系统】之Python版本切换、谷歌浏览器取消自动升级

    都是很有用的文章,本文都是转载文章,以便后续查阅: Mac Chrome浏览器取消自动升级(看这一篇就够了) <Mac修改默认python版本> <mac设置python版本切换,和 ...

  4. wamp 两个不同的php.ini

    最近在本地开发的windows wamp环境安装一个vld 扩展,碰见一个奇怪的问题,phpinfo() 有 而cli 命令模式里面却没有 最后发现wamp phpinfo()和cli命令模式指向的p ...

  5. FreeSWITCH 基础

    [1]FreeSWITCH 是什么? FreeSWITCH是一个开源的电话交换平台. 世界上第一个跨平台的.伸缩性极好的.免费的.多协议的电话软交换平台. 从技术上讲,FreeSWITCH是一个B2B ...

  6. 使用Highcharts实现柱状图展示

    第一步 新建页面line.html,引入HighCharts核心js文件 <script type="text/javascript" src="../../js/ ...

  7. IOS ARC内存管理,提高效率避免内存泄露

    本文转载至 http://blog.csdn.net/allison162004/article/details/38756263 Cocoa内存管理机制 (1)当你使用new.alloc.copy方 ...

  8. (比赛)A - Simple String Problem

    A - Simple String Problem Time Limit:10000MS     Memory Limit:65536KB     64bit IO Format:%lld & ...

  9. ArcGIS API for js InfoWindow

    说明:有关该示例中怎么引用部署在iis上的离线arcgis api请参考我前面的博文 1.运行效果 2.HTML代码 <!DOCTYPE html> <html> <he ...

  10. iOS 开发与H5交互(JavaScriptCore框架的使用)

    现在的iOS项目中嵌入了越来越多的Web界面,当然是为了方便,那么为了迎合这一趋势,作为iOS开发程序员,我们必须要了解怎么样用OC去和这些Web界面进行交互.这里介绍的是JavaScriptCore ...