np_utils.to_categorical
https://blog.csdn.net/zlrai5895/article/details/79560353
多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多。这里我们利用Keras机器学习框架中的ANN(artificial neural network)来解决多分类问题。这里我们采用的例子是著名的UCI Machine Learning Repository中的鸢尾花数据集(iris flower dataset)。
1. 编码输出便签
多类分类问题与二类分类问题类似,需要将类别变量(categorical function)的输出标签转化为数值变量。这个问题在二分类的时候直接转换为(0,1)(输出层采用sigmoid函数)或(-1,1)(输出层采用tanh函数)。类似的,在多分类问题中我们将转化为虚拟变量(dummy variable):即用one hot encoding方法将输出标签的向量(vector)转化为只在出现对应标签的那一列为1,其余为0的布尔矩阵。以我们所用的鸢尾花数据为例:
sample, label
1, Iris-setosa
2, Iris-versicolor
3, Iris-virginica
用one hot encoding转化后如下:
sample, Iris-setosa, Iris-versicolor, Iris-virginica
1, 1, 0, 0
2, 0, 1, 0
3, 0, 0, 1
注意这里不要将label直接转化成数值变量,如1,2,3,这样的话与其说是预测问题更像是回归预测的问题,后者的难度比前者大。(当类别比较多的时候输出值的跨度就会比较大,此时输出层的激活函数就只能用linear)
这一步转化工作我们可以利用keras中的np_utils.to_categorical
函数来进行。
2. 构建神经网络模型
Keras是基于Theano或Tensorflow底层开发的简单模块化的神经网络框架,因此用Keras搭建网络结构会比Tensorflow更加简单。这里我们将使用Keras提供的KerasClassifier类,这个类可以在scikit-learn包中作为Estimator使用,故利用这个类我们就可以方便的调用sklearn包中的一些函数进行数据预处理和结果评估(此为sklearn包中模型(model)的基本类型)。
对于网络结构,我们采用3层全向连接的,输入层有4个节点,隐含层有10个节点,输出层有3个节点的网络。其中,隐含层的激活函数为relu(rectifier),输出层的激活函数为softmax。损失函数则相应的选择categorical_crossentropy(此函数来着theano或tensorflow,具体可以参见这里)(二分类的话一般选择activation=‘sigmoid’, loss=‘binary_crossentropy’)。
PS:对于多类分类网络结构而言,增加中间隐含层能够提升训练精度,但是所需的计算时间和空间会增大,因此需要测试选择一个合适的数目,这里我们设为10;此外,每一层的舍弃率(dropout)也需要相应调整(太高容易欠拟合,太低容易过拟合),这里我们设为0.2。
3. 评估模型
这里我们利用评估机器学习模型的经典方法: k折交叉检验(k-fold cross validation)。这里我们采用10折(k=10)。
4. 代码实现
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils
from sklearn.model_selection import train_test_split, KFold, cross_val_score
from sklearn.preprocessing import LabelEncoder # load dataset
dataframe = pd.read_csv("iris.csv", header=None)
dataset = dataframe.values
X = dataset[:, 0:4].astype(float)
Y = dataset[:, 4] # encode class values as integers
encoder = LabelEncoder()
encoded_Y = encoder.fit_transform(Y)
# convert integers to dummy variables (one hot encoding)
dummy_y = np_utils.to_categorical(encoded_Y) # define model structure
def baseline_model():
model = Sequential()
model.add(Dense(output_dim=10, input_dim=4, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(output_dim=3, input_dim=10, activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
estimator = KerasClassifier(build_fn=baseline_model, nb_epoch=40, batch_size=256)
# splitting data into training set and test set. If random_state is set to an integer, the split datasets are fixed.
X_train, X_test, Y_train, Y_test = train_test_split(X, dummy_y, test_size=0.3, random_state=0)
estimator.fit(X_train, Y_train) # make predictions
pred = estimator.predict(X_test) # inverse numeric variables to initial categorical labels
init_lables = encoder.inverse_transform(pred) # k-fold cross-validate
seed = 42
np.random.seed(seed) # numpy.random.seed()的使用
kfold = KFold(n_splits=10, shuffle=True, random_state=seed)
results = cross_val_score(estimator, X, dummy_y, cv=kfold)
fit_transform()和transform()的区别
np_utils.to_categorical的更多相关文章
- TypeError: to_categorical() got an unexpected keyword argument 'nb_classes'
在学习莫烦教程中keras教程时,报错:TypeError: to_categorical() got an unexpected keyword argument 'nb_classes',代码如下 ...
- [Keras] Develop Neural Network With Keras Step-By-Step
简单地训练一个四层全连接网络. Ref: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/ 1 ...
- 如何用卷积神经网络CNN识别手写数字集?
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP, ...
- [Keras] mnist with cnn
典型的卷积神经网络. Keras傻瓜式读取数据:自动下载,自动解压,自动加载. # X_train: array([[[[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0. ...
- Keras学习~试用卷积~跑CIFAR-10
import numpy as np import cPickle import keras as ks from keras.layers import Dense, Activation, Fla ...
- Keras学习~第一个例子~跑MNIST
import numpy as npimport gzip import struct import keras as ks import logging from keras.layers impo ...
- Keras
sudo pip install keras --安装 新建一个文件,里面存储的数据:第一列是属性,第二列是类别 11220044 011220044 011220044 011220033 1112 ...
- 用keras的cnn做人脸分类
keras介绍 Keras是一个简约,高度模块化的神经网络库.采用Python / Theano开发. 使用Keras如果你需要一个深度学习库: 可以很容易和快速实现原型(通过总模块化,极简主义,和可 ...
- 【Python与机器学习】:利用Keras进行多类分类
多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多.这里我们利用Keras机器学习框架中的ANN(artificial neural network)来解决多分类问题.这里我们采 ...
随机推荐
- hdu1021(C++)
打表找规律,发现是n%4==2就是yes,否则是no #include<iostream>using namespace std;int main(){ int n; while (cin ...
- 浅谈Java中静态初始化块跟非初始化块
众所周知在JAVA编程语言中有两种初始化块: 静态初始化块 非静态初始化块 他们到底有什么区别呢?今天就浅谈一下JAVA中静态初始化块和非静态初始化块的区别 静态初始化块 定义: ...
- 分享三个USB抓包软件---Bus Hound,USBlyzer 和-USBTrace
Bus Hound官方下载地址:http://perisoft.net/bushound/Bus Hound 简易使用手册:bus_hound5.0中文使用说明.pdf (246 K) 下载次数:9 ...
- ElastcSearch的Mapping映射建立
根据oracle的字段来建立ElasticSearch的Mapping public class Start { private static Logger log = LoggerFactory.g ...
- .Net程序测试使用阿里云OCS开放缓存服务
首先需要有一个阿里的OCS实例和ECS云服务器 请确认这两个是在同一个可用区的,这个很重要! 这两个可以在阿里云官网申请得到 拿到OCS之后 进入OCS控制台,点击下面的客户端下载选择.Net客 ...
- [PWA] Disable Text Selection and Touch Callouts in a PWA on iOS
Because an installed PWA is really just a web app running in a browser, there are some browser behav ...
- JAVA Eclipse如何导出APK程序
为了最快的导出程序,直接导出未签名的APK 但是大部分手机不允许安装未经签名的程序 导出签名的项目 设置密码,后面的都可以随便设置 这样最后生成的APK就可以直接双击完成安装 ...
- Laravel之Session
一.配置 Session 配置文件位于config/session.php .默认情况下,Laravel 使用的session 驱动为文件驱动,这对许多应用而言是没有什么问题的.在生产环境中,你可能考 ...
- springboot缓存及连接池配置
参见https://coding.imooc.com/lesson/117.html#mid=6412 1.springboot的springweb自己默认以及配置好了缓存,只需要在主文件(XxxAp ...
- 远程链接mysql数据库
mysql -P3306 -uroot -proot 显示最大连接数 show variables like '%max_connections%'; 设置最大链接数 ;//默认100--只对当前进程 ...