题目

智力下降严重

显然要反演了呀

首先必须满足\(x|y\),否则答案是\(0\)

我们枚举这个数列的\(gcd\)是\(d\)或者\(d\)的倍数

于是答案就是

\[\sum_{x|d}[d|y]\mu(\frac{x}{d})g(\frac{y}{d})
\]

\(g(d)\)表示和为\(d\)的正整数数列的数量,显然就是插一下板,于是\(g(d)=\sum_{i=1}^d\binom{d-1}{i-1}=2^{d-1}\)

代码

#include<bits/stdc++.h>
#define re register
#define LL long long
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int mod=1e9+7;
const int maxn=1e5+5;
inline int ksm(int a,int b) {
int S=1;
for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) S=1ll*S*a%mod;
return S;
}
int n,m,T,ans;
int f[maxn],p[maxn>>1],mu[maxn];
inline int getmu(int x) {
if(x<=T) return mu[x];int now=0;
for(re int i=1;i<=p[0]&&x!=1;++i) {
if(x%p[i]) continue;
x/=p[i];now^=1;
if(x%p[i]==0) return 0;
}
if(x!=1) now^=1;
if(!now) return 1;return -1;
}
inline void add(int i) {
if(i%n) return;
int x=getmu(i/n);
if(x==1) ans=(ans+ksm(2,m/i-1))%mod;
if(x==-1) ans=(ans-ksm(2,m/i-1)+mod)%mod;
}
int main() {
scanf("%d%d",&n,&m);
if(m%n) {puts("0");return 0;}
T=std::ceil(std::sqrt(m/n));f[1]=mu[1]=1;
for(re int i=2;i<=T;i++) {
if(!f[i]) p[++p[0]]=i,mu[i]=-1;
for(re int j=1;j<=p[0]&&p[j]*i<=T;++j) {
f[p[j]*i]=1;if(i%p[j]==0) break;
mu[p[j]*i]=-1*mu[i];
}
}
for(re int i=1;i*i<=m;++i) {
if(m%i) continue;
add(i);if(m/i!=i) add(m/i);
}
printf("%d\n",ans);
return 0;
}

【CF900D】Unusual Sequences的更多相关文章

  1. 【CF900D】Unusual Sequences 容斥(莫比乌斯反演)

    [CF900D]Unusual Sequences 题意:定义正整数序列$a_1,a_2...a_n$是合法的,当且仅当$gcd(a_1,a_2...a_n)=x$且$a_1+a_2+...+a_n= ...

  2. 【BZOJ-4059】Non-boring sequences 线段树 + 扫描线 (正解暴力)

    4059: [Cerc2012]Non-boring sequences Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 440  Solved: 16 ...

  3. 【BZOJ4059】Non-boring sequences

    Solution 记序列为\(a\),计算出与\(a_i\)相等的前一个元素的位置\(pre_i\),以及后一个元素的位置\(nex_i\),显然,对于那些左端点处于\((pre_i,i]\)以及右端 ...

  4. 【atcoder】Two Sequences [arc092 D](思维题)

    题目传送门:https://arc092.contest.atcoder.jp/tasks/arc092_b 这场arc好难啊...这场感觉不像正常的arc...其实这道题还可以更早写出来的,但是蒟蒻 ...

  5. 【BZOJ4059】Non-boring sequences(分析时间复杂度)

    题目: BZOJ4059 分析: 想了半天没什么想法,百度到一个神仙做法-- 设原数列为 \(a\),对于每一个 \(i\) 求出前一个和后一个和 \(a_i\) 相等的位置 \(pre[i]\) 和 ...

  6. 【HDU6647】Bracket Sequences on Tree(树Hash 树上Dp)

    题目链接 大意 给出一颗树,按下列方式生成一个括号序列. function dfs(int cur, int parent): print('(') for all nxt that cur is a ...

  7. 论文阅读(Weilin Huang——【AAAI2016】Reading Scene Text in Deep Convolutional Sequences)

    Weilin Huang--[AAAI2016]Reading Scene Text in Deep Convolutional Sequences 目录 作者和相关链接 方法概括 创新点和贡献 方法 ...

  8. 【LeetCode】Repeated DNA Sequences 解题报告

    [题目] All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: &quo ...

  9. 【转】Python数据类型之“序列概述与基本序列类型(Basic Sequences)”

    [转]Python数据类型之“序列概述与基本序列类型(Basic Sequences)” 序列是指有序的队列,重点在"有序". 一.Python中序列的分类 Python中的序列主 ...

随机推荐

  1. HIVE的数据类型

  2. bzoj 2751

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2751 稍微推一下就知道是每一位置可取的值的和乘起来 #include <iostrea ...

  3. CUDA并行计算 | 线程模型与内存模型

    文章目录 前言 CUDA线程模型(如何组织线程) CUDA内存模型(了解不同内存优缺点,合理使用) 前言   CUDA(Compute Unified Device Architecture)是显卡厂 ...

  4. NX二次开发-UFUN链表UF_MODL_create_list等用法

    NX9+VS2012 #include <uf.h> #include <uf_modl.h> #include <uf_curve.h> #include < ...

  5. hdu多校第九场 1006 (hdu6685) Rikka with Coin 暴力

    题意: 有一些1毛,2毛,5毛,1块的钢镚,还有一些价格不同的商品,现在要求你带一些钢镚,以保证这些商品中任选一件都能正好用这些钢镚付账,问最少带多少钢镚. 题解: 对于最优解,1毛的钢镚最多带1个, ...

  6. (转)HashMap和HashSet的区别

    HashMap和HashSet的区别是Java面试中最常被问到的问题.如果没有涉及到Collection框架以及多线程的面试,可以说是不完整.而Collection框架的问题不涉及到HashSet和H ...

  7. 20140308 std::fill

    std::fill  在[first, last)范围内填充值:std::fill(v.begin(), v.end(), 100);http://blog.csdn.net/ilysony/arti ...

  8. 往github上上传项目

    点击start a project 新建 下面部分传送http://blog.csdn.net/s740556472/article/details/55000019 如图: 这里我们有一个步骤需要做 ...

  9. bzoj 3579: 破冰派对

    题意: 给你一个图,问你有多少个方案把他分成连个新的图.使得一个图是一个团,另外一个是独立集 一些闲话: 以前做过一次这个题..当时听说爆搜可以过,就无脑莽过去了.. 也没有思考为什么爆搜能过,或者有 ...

  10. Redis问题整理

    Redis问题总结 1.单点登录的两个项目cookie不一致 由于在配置自定义Cookie的时候 @Bean("shiroCookie") public SimpleCookie ...