【CF900D】Unusual Sequences
智力下降严重
显然要反演了呀
首先必须满足\(x|y\),否则答案是\(0\)
我们枚举这个数列的\(gcd\)是\(d\)或者\(d\)的倍数
于是答案就是
\]
\(g(d)\)表示和为\(d\)的正整数数列的数量,显然就是插一下板,于是\(g(d)=\sum_{i=1}^d\binom{d-1}{i-1}=2^{d-1}\)
代码
#include<bits/stdc++.h>
#define re register
#define LL long long
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int mod=1e9+7;
const int maxn=1e5+5;
inline int ksm(int a,int b) {
int S=1;
for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) S=1ll*S*a%mod;
return S;
}
int n,m,T,ans;
int f[maxn],p[maxn>>1],mu[maxn];
inline int getmu(int x) {
if(x<=T) return mu[x];int now=0;
for(re int i=1;i<=p[0]&&x!=1;++i) {
if(x%p[i]) continue;
x/=p[i];now^=1;
if(x%p[i]==0) return 0;
}
if(x!=1) now^=1;
if(!now) return 1;return -1;
}
inline void add(int i) {
if(i%n) return;
int x=getmu(i/n);
if(x==1) ans=(ans+ksm(2,m/i-1))%mod;
if(x==-1) ans=(ans-ksm(2,m/i-1)+mod)%mod;
}
int main() {
scanf("%d%d",&n,&m);
if(m%n) {puts("0");return 0;}
T=std::ceil(std::sqrt(m/n));f[1]=mu[1]=1;
for(re int i=2;i<=T;i++) {
if(!f[i]) p[++p[0]]=i,mu[i]=-1;
for(re int j=1;j<=p[0]&&p[j]*i<=T;++j) {
f[p[j]*i]=1;if(i%p[j]==0) break;
mu[p[j]*i]=-1*mu[i];
}
}
for(re int i=1;i*i<=m;++i) {
if(m%i) continue;
add(i);if(m/i!=i) add(m/i);
}
printf("%d\n",ans);
return 0;
}
【CF900D】Unusual Sequences的更多相关文章
- 【CF900D】Unusual Sequences 容斥(莫比乌斯反演)
[CF900D]Unusual Sequences 题意:定义正整数序列$a_1,a_2...a_n$是合法的,当且仅当$gcd(a_1,a_2...a_n)=x$且$a_1+a_2+...+a_n= ...
- 【BZOJ-4059】Non-boring sequences 线段树 + 扫描线 (正解暴力)
4059: [Cerc2012]Non-boring sequences Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 440 Solved: 16 ...
- 【BZOJ4059】Non-boring sequences
Solution 记序列为\(a\),计算出与\(a_i\)相等的前一个元素的位置\(pre_i\),以及后一个元素的位置\(nex_i\),显然,对于那些左端点处于\((pre_i,i]\)以及右端 ...
- 【atcoder】Two Sequences [arc092 D](思维题)
题目传送门:https://arc092.contest.atcoder.jp/tasks/arc092_b 这场arc好难啊...这场感觉不像正常的arc...其实这道题还可以更早写出来的,但是蒟蒻 ...
- 【BZOJ4059】Non-boring sequences(分析时间复杂度)
题目: BZOJ4059 分析: 想了半天没什么想法,百度到一个神仙做法-- 设原数列为 \(a\),对于每一个 \(i\) 求出前一个和后一个和 \(a_i\) 相等的位置 \(pre[i]\) 和 ...
- 【HDU6647】Bracket Sequences on Tree(树Hash 树上Dp)
题目链接 大意 给出一颗树,按下列方式生成一个括号序列. function dfs(int cur, int parent): print('(') for all nxt that cur is a ...
- 论文阅读(Weilin Huang——【AAAI2016】Reading Scene Text in Deep Convolutional Sequences)
Weilin Huang--[AAAI2016]Reading Scene Text in Deep Convolutional Sequences 目录 作者和相关链接 方法概括 创新点和贡献 方法 ...
- 【LeetCode】Repeated DNA Sequences 解题报告
[题目] All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: &quo ...
- 【转】Python数据类型之“序列概述与基本序列类型(Basic Sequences)”
[转]Python数据类型之“序列概述与基本序列类型(Basic Sequences)” 序列是指有序的队列,重点在"有序". 一.Python中序列的分类 Python中的序列主 ...
随机推荐
- BlockingQueu 阻塞队列
java.util.concurrent public interface BlockingQueue<E> extends Queue<E> 简介 当阻塞队列插入数据时: 如 ...
- mui与springMVC前后端分离
这个小dome简单来说的前后端分离,通过跨域调用接口来显示数据. 前端用到mui框架,主要来显示数据. 后端用到Java的springMVC,restful服务来做增删改查管理, 这里主要实现动态显示 ...
- Android Canvas save和restoreToCount
@Override public void draw(Canvas canvas) { if (mDrawable!=null) { int sc=canvas.save(); if (mAnimat ...
- HDU6395-Sequence 矩阵快速幂+除法分块 矩阵快速幂模板
目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门 原题目描述在最下面. Solution ...
- C9 vs 三星
我还是更喜欢 C9, 可惜当年的牛B人物 LemonNation 不在了,C9 赢 三星 一局的机会都没有了. 伟大的 LemonNation ,软件工程学硕士, 2014年,LemonNation ...
- D3.js坐标轴的绘制方法、添加坐标轴的刻度和各比例尺的坐标轴(V3版本)
坐标轴(Axis) 坐标轴(Axis)在很多图表中都可见到,例如柱形图.折线图.散点图等.坐标轴由一组线段和文字组成,坐标轴上的点由一个坐标值确定.但是,如果使用SVG的直线和文字一笔一画的绘制坐 ...
- JS事件 光标聚焦事件(onfocus)当网页中的对象获得聚点时,执行onfocus调用的程序就会被执行
光标聚焦事件(onfocus) 当网页中的对象获得聚点时,执行onfocus调用的程序就会被执行. 如下代码, 当将光标移到文本框内时,即焦点在文本框内,触发onfocus 事件,并调用函数messa ...
- springmvc常用知识总结,不定期更新
1.@Controller 注解到类名上,表示该类是控制器. 2.@RequestMapping("/xxxx") 可以放在类名/方法名之上,表示访问请求该方法时的映射url.如果 ...
- The linux command之高级键盘技巧
一.光标移动 二.修改文本 三.剪切和粘贴文本 四.使用历史命令
- PHP算法之回文数
判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121输出: true示例 2: 输入: -121输出: false解释: 从左向右读, ...