不支持深度学习和强化学习

numpy介绍:

np.eye(n)生成一个n维单元数组

数据预处理:

iris数据加载

from sklearn import datasets
iris = datasets.load_iris()

数据展示

显示iris的信息

print(iris.data)
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
……
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]]

每列数据表示不同样本同一属性下对用的数值

print(iris.feature_names)
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

输出目标结果

print(iris.target)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]

结果的含义

print(iris.target_names)
['setosa' 'versicolor' 'virginica']

确认数据类型

print(type(iris.data))
print(type(iris.target))

<class 'numpy.ndarray'>
<class 'numpy.ndarray'>

确认维度

print(iris.data.shape)

print(iris.target.shape)

(150, 4)
(150,)

X输入数据赋值,y输出数据赋值

X = iris.data
y = iris.target

模型训练:

分类:根据数据集目标的特征或属性,划分到已有的类别中

常用分类算法:KNN(K近邻)、逻辑回归、决策树、朴素贝叶斯

KNN(最简单的机器学习算法之一):

给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的l个实例,这k个实例多数是什么类型就将该输入实例分类到这个类中

模型调用

from sklearn.neighbors import KNeighborsClassifier

创建实例

knn=KNeighborsClassifier(n_neighbors=5)

模型训练

模型训练与预测

y_pred=knn.fit(X,y)
knn.predict(y_pred)

准确率

from sklearn.metrics import accuracy_score
print(accuracy_score(y,y_pred))

数据分离

from sklearn.model_selection import train_test_split

#训练输入数据,预测的输入数据,训练结果,预测结果
x_train,x_test,y_train,y_test=train_test_split(X,y,test_size=0.4)

分离后数据集的训练与评估

knn_5_s = KNeighborsClassifier(n_neighbors=5)
knn_5_s.fit(X_train, y_train)
y_train_pred=knn_5_s.predict(X_train)
y_test_pred=knn_5_s.predict(X_test)

确定k值

k_range=list(range(1,26))

score_train=[]
score_test=[]
for k in k_range:
knn=KNeighborsClassifier(n_neighbors=k)
knn.fit(X_train,y_train)
y_train_pred=knn.predict(X_train)
y_test_pred=knn.predict(X_test)
score_train.append(accuracy_score(y_train,y_train_pred))
score_test.append(accuracy_score(y_test,y_test_pred))

图形展示

import matplotlib.pyplot as plt
%matplotlib inline
#展示k值与训练数据集预测准确率之间的关系
plt.plot(k_range,score_test)
plt.xlabel('K(KNN model)')
plt.ylabel('Training Accuracy')

  • 训练数据集准确率 随着模型复杂而提高
  • 测试数据集准确率 在模型过于简单或复杂而准确率更低
  • KNN模型中,模型复杂度由K决定,(k越小,复杂度越高)

对新数据进行预测

knn_11=KNeighborsClassifier(n_neighbors=11)
knn_11.fit(X_train,y_train)
knn_11.predict([[1,2,3,4]])

逻辑回归模型:

用于解决分类问题的一种模型。根据数据特征或属性,计算其归属于每一类别的概率P(x),根据概率数值判断其所属类别。主要应用场景:二分类问题。

P(x)=1/(1+e-(ax+b))    y={1,  P(x)≥0.5  0,P(x)<0.5

其中y为类别结果,P为概率,x为特征值,a、b为常量

(皮马印第安人糖尿病数据集)

输入变量:独立变量包括患者的怀孕次数,葡萄糖量,血压,皮褶厚度,体重指数,胰岛素水平,糖尿病谱系功能,年龄

输出结果:是否含义糖尿病

数据来源:Pima Indians Dianbetes dataset

预测准确率的局限性:

无法真实反映模型针对各个分类的预测准确度

准确率可以方便的用于衡量模型的整体预测效果,但无法反应细节信息,具体表现:

  • 没有体现数据的实际分布情况
  • 没有体现模型错误预测的类型

空准确率:当模型总是预测比例较高的类别,其预测准确率的数值

混淆矩阵(误差矩阵):

用于衡量分类算法的准确程度

  • True Positives(TP):预测准确、实际为正样本的数量(实际为1,预测为1)
  • True Negatives(TN):预测准确、实际为负样本的数量(实际为0,预测为0)
  • False Positives(FP):预测错误、实际为负样本的数量(实际为0,预测为1)
  • False Negatives(FN):预测错误、实际为正样本的数量(实际为1,预测为0)
  公式 定义

准确率

(Accuracy)

整体样本中,预测正确的比例

错误率

(Misclassification Rate)

整体样本中,预测错误的比例

召回率

(Recall)

正样本中,预测正确的比例

特异度

(Specificity)

  负样本中,预测正确的比例

精确率

(Precision)

  预测结果为正样本中,预测正确的比例

F1分数

(F1 Score)

  综合Precision和Recall的判断指标

混淆矩阵指标特点:

  • 分类任务中,相比单一的预测准确率,混淆矩阵提供了更全面的模型评估信息
  • 通过混淆矩阵,我们可以计算出多样性的模型表现衡量指标,从而更好地选择模型

哪个衡量指标更关键?

  • 衡量指标的选择取决于应用场景
  • 垃圾邮件检测(正样本判断为“垃圾邮件”):希望普通邮件(负样本)不要被判断为垃圾邮件(正样本),需要关注精确率和召回率
  • 异常交易检测(正样本为“异常交易”):希望所有的异常交易都被检测到,需要关注特异度

#数据预处理

import pandas as pd

path='csv文件路径/xxx.csv'

pima=pd.read_csv(path)

#X,y赋值

feature_names=['pregnant','insulin','bmi','age']

X=pima[feature_names]

y=pima.label

#维度确认

print(X.shape,y.shape)

#数据分离

from sklearn.model_selection import train_test_split

X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=0)

#模型训练

from sklearn.linear_model import LogisticRegression

logreg=LogisticRegression()

logreg.fit(X_train,y_train)

#测试数据集结果预测

y_pred=logreg.predict(X_test)

#使用准确率进行评估

from sklearn import metrics

print(metrics.accuracy_score(y_test,y_pred))

#确认正负样本数据量

y_test.value_counts()

#1的比例

y_test.mean()

#0的比例

1-y_test.mean()

#空准确率

max(y_test.mean(),1-y_test.mean())

#四个因子赋值

cofusion=metrics.confusion_matrix(y_test,y_pred)

TN=confusion[0,0]

FP=confusion[0,1]

FN=confusion[1,0]

TP=confusion[1,1]

print(TN,FP,FN,TP)

/*指标计算参见上面的公式*/

python调用scikit-learn机器学习的更多相关文章

  1. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  2. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  3. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  4. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  5. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  6. 小姐姐带你一起学:如何用Python实现7种机器学习算法(附代码)

    小姐姐带你一起学:如何用Python实现7种机器学习算法(附代码) Python 被称为是最接近 AI 的语言.最近一位名叫Anna-Lena Popkes的小姐姐在GitHub上分享了自己如何使用P ...

  7. Python大数据与机器学习之NumPy初体验

    本文是Python大数据与机器学习系列文章中的第6篇,将介绍学习Python大数据与机器学习所必须的NumPy库. 通过本文系列文章您将能够学到的知识如下: 应用Python进行大数据与机器学习 应用 ...

  8. 蓝奏云数值验证码识别,python调用虹鱼图灵识别插件,超高正确率

    识别验证码一直是本人想要做的事情,一直在接触按键精灵,了解到有一个虹鱼图灵识别插件专门做验证码和图像识别,原理就是图片处理和制作字库识别,制作字库我一直觉得很麻烦,工程量太大.不管怎样,它能用能达到我 ...

  9. 【初学python】使用python调用monkey测试

    目前公司主要开发安卓平台的APP,平时测试经常需要使用monkey测试,所以尝试了下用python调用monkey,代码如下: import os apk = {'j': 'com.***.test1 ...

  10. python调用py中rar的路径问题。

    1.python调用py,在py中的os.getcwd()获取的不是py的路径,可以通过os.path.split(os.path.realpath(__file__))[0]来获取py的路径. 2. ...

随机推荐

  1. Java初识方法

    5.初识方法 方法就是一段代码片段,这个片段可以完成特定的功能,并且可以重复利用. 5.1 方法的定义 5.1.1方法的定义格式 [方法修饰列表] 返回值类型 方法名(方法参数列表){ 方法体 } ① ...

  2. spring boot 项目启动无法访问,排查

    查看docker日志,后台应用正常启动,定时任务正常执行,但是前端无法访问到后端接口,点击提示系统错误,解压出项目二级域名,访问域名,报错:Kong Error,说明Kong路由转发没有绑定项目端口, ...

  3. 一张图看懂阿里云网络产品【十五】IPv6 解决方案

    摘要: 作为国内首家全面支持IPv6的云厂商,阿里云12月再次推出全栈IPv6解决方案,核心产品已全面支持,协助客户小时/天级即可完成IPv6 访问.方案成功历经优酷.淘宝.天猫.双十一考验.SLB ...

  4. bzoj1008题解

    [题意分析] 求长度为n,元素大小在[1,m]∩N的序列中,有多少个序列中存在相同的相邻元素. [解题思路] 小学奥数题.. 总序列数:S=mn 不存在相同的相邻元素的序列数:T=m*(m-1)n-1 ...

  5. 在Panel上绘图的实现

    近期制作了FDS的一个建模工具,由于知识有限,做出的效果是2D的.昨天上课的时候看老师画一个长方体,突然想到,为什么不给普通的2D图形加画上几条直线,就能实现2D图形的3D视觉效果呢?于是回来马上做了 ...

  6. JS常见的报错类型

    解决错误前,首先要学会阅读报错信息 eg:Uncaught TypeError: ... is not a function Uncaught 表示没有被catch语句捕获到的错误 TypeError ...

  7. CocoaPods管理iOS项目 2018年11月06日

    一.创建Test工程项目 二.打开终端 当前pod版本(1.6.0.beta.2最新版本2018年11月06日)和gem源路径(https://gems.ruby-china.com): 1.cd+当 ...

  8. [17]APUE:线程

    通常情况下,线程模型的并发性能优于进程模型,但不总是这样 线程的优势: 线程的创建.销毁及上下文切换代价比进程低 某些情况下,使用线程可以简化逻辑,避免异步编程的复杂性 同一进程内所有线程共享全局内存 ...

  9. Redis学习之缓存数据类型

    Redis缓存数据类型有5种,分别是String(字符串).List(列表).Hash(哈希).Set(无序,不重复集合).ZSet(sorted set:有序,不重复集合). String(字符串) ...

  10. css样式高级技巧-选择器

    用<div>元素为网页 在编写样式表时,我们经常要用div元素来包装内容: <div> <p>Here are two paragraphs of content& ...