一个包含arctan与arctanh的积分
\[\Large\int_0^1\frac{\arctan x \,\operatorname{arctanh} x\, \ln x}{x}\mathrm{d}x=\frac{\pi^2}{16}\mathbf{G}-\frac{7\pi}{32}\zeta(3)\]
\(\Large \mathrm{\mathbf{Proof:}}\)
Let \(n=0,1,2,\cdots\), We define \(I,I_{1,n},I_{2,n}\) and \(I_n\) as follows:
\[\begin{align*}I &= \int_0^1 \frac{\ln(x)\tan^{-1}(x)\tanh^{-1}(x)}{x}\mathrm{d}x~~,~~I_{1,n} =\int_0^1 x^{2n}\ln(x)\ln(1-x)\; \mathrm{d}x \\ I_{2,n}&=\int_0^1 x^{2n}\ln(x)\ln(1+x)\; \mathrm{d}x~~,~~I_n = \int_0^1 x^{2n} \ln(x)\tanh^{-1}(x)\; \mathrm{d}x \end{align*}\]
Part I : Evaluation of \(I_{1,n}\), \(I_{2,n}\) and \(I_n\)
\[\begin{align*} I_{1,n} &= \int_0^1 x^{2n}\ln(x)\ln(1-x) \mathrm{d}x= \int_0^1 x^{2n}\ln(x)\left(-\sum_{j=1}^\infty \frac{x^j}{j} \right) \mathrm{d}x\\
&= -\sum_{j=1}^\infty \frac{1}{j} \int_0^1 x^{2n+j}\ln(x) \mathrm{d}x= \sum_{j=1}^\infty \frac{1}{j\left(2n+1+j \right)^2}\\
&= \frac{1}{(2n+1)^2}\sum_{j=1}^\infty \left(\frac{1}{j}-\frac{1}{j+2n+1} \right)-\frac{1}{(2n+1)}\sum_{j=1}^\infty \frac{1}{(j+2n+1)^2}\\ &= \frac{\gamma +\psi_0(2n+2)}{(2n+1)^2}-\frac{\psi_1(2n+2)}{2n+1} \tag{1} \end{align*}\]
Similarly,
\[\begin{align*} I_{2,n}&=\int_0^1 x^{2n}\ln(x)\ln(1+x) \mathrm{d}x = \int_0^1 x^{2n}\ln(x)\left(\sum_{j=1}^\infty\frac{(-1)^{j+1}x^j}{j} \right) \mathrm{d}x\\&= \sum_{j=1}^\infty \frac{(-1)^{j+1}}{j}\int_0^1 x^{2n+j}\ln(x) \mathrm{d}x = \sum_{j=1}^\infty \frac{(-1)^{j}}{j\left(2n+1+j \right)^2} \\ &= \frac{1}{(2n+1)^2}\sum_{j=1}^\infty \frac{(-1)^j}{j}-\frac{1}{(2n+1)^2}\sum_{j=1}^\infty\frac{(-1)^j}{j+2n+1}-\frac{1}{2n+1}\sum_{j=1}^\infty \frac{(-1)^j}{(j+2n+1)^2} \\ &= -\frac{\ln(2)}{(2n+1)^2}+\frac{\psi_0\left( n+\dfrac{3}{2}\right)-\psi_0(n+1)}{2(2n+1)^2}+\frac{\psi_1(n+1)-\psi_1\left(n+\dfrac{3}{2} \right)}{4(2n+1)} \end{align*}\]
We can make some simplifications using the following identities:
\[\begin{align*} \psi_0\left(n+\frac{3}{2} \right) &= 2\psi_0(2n+2)-\psi_0(n+1)-2\ln(2) \\ \psi_1\left( n+\frac{3}{2}\right) &= 4\psi_1(2n+2)-\psi_1(n+1) \end{align*}\]
So, \(I_{2,n}\) can be written as:
\[\begin{align*} I_{2,n}&= -\frac{2\ln(2)}{(2n+1)^2}+\frac{\psi_0(2n+2)-\psi_0(n+1)}{(2n+1)^2}+\frac{2\psi_1(n+1)-4\psi_1(2n+2)}{4(2n+1)} \tag{2} \end{align*}\]
Also note that \(\displaystyle I_n=\frac{I_{2,n}-I_{1,n}}{2}\). Therefore,
\[\begin{align*}
I_n=-\frac{\ln(2)}{(2n+1)^2}-\frac{\gamma+\psi_0(n+1)}{2(2n+1)^2}+\frac{\psi_1(n+1)}{4(2n+1)}\tag{3}
\end{align*}\]
Part II : Expressing \(I\) in terms of Euler Sums
\[\begin{align*} I &= \int_0^1 \frac{\ln(x)\tan^{-1}(x)\tanh^{-1}(x)}{x}\mathrm{d}x= \int_0^1 \frac{\ln(x)\tanh^{-1}(x)}{x}\left(\sum_{n=0}^\infty \frac{(-1)^n}{2n+1}x^{2n+1} \right)\mathrm{d}x \\ &= \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} \int_0^1 x^{2n}\ln(x)\tanh^{-1}(x) \mathrm{d}x= \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} I_n \\ &= \sum_{n=0}^\infty \frac{(-1)^n}{2n+1}\left(-\frac{\ln(2)}{(2n+1)^2}-\frac{\gamma+\psi_0(n+1)}{2(2n+1)^2}+\frac{\psi_1(n+1)}{4(2n+1)} \right) \\ &= -\ln(2)\frac{\pi^3}{32}-\frac{1}{2}\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)^3}\left( \gamma+\psi_0(n+1)\right)+\frac{1}{4}\sum_{n=0}^\infty \frac{(-1)^n \psi_1(n+1)}{(2n+1)^2} \end{align*}\]
Let us denote the euler sums by \(E_1\) and \(E_2\):
\[E_1 = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)^3}\left( \gamma+\psi_0(n+1)\right)~~,~~E_2 = \sum_{n=0}^\infty \frac{(-1)^n \psi_1(n+1)}{(2n+1)^2}\]
Part III : Evaluation of \(E_1\)
We use the FS-contour method. Let \(\displaystyle f(z)=\frac{\pi\csc(\pi z) \left(\gamma+\psi_0(-z) \right)}{(2z+1)^3}\). Then the sum of all residues of \(f(z)\) is zero.
The sum of the residues at the negative integers is equal to:
\[\sum_{n=1}^{\infty}\text{Res}_{z=-n}f(z) = \sum_{n=1}^\infty \frac{(-1)^{n-1} \left(\gamma+\psi_0(n) \right)}{(2n-1)^3}= E_1 \]
At \(z=-\dfrac{1}{2}\), the residue is
\[\text{Res}_{z=-1/2}f(z) = \frac{\pi^3}{8}\ln(2)+\frac{7\pi}{8}\zeta(3)\]
The sum of the residues at the positive integers is:
\[\sum_{n=0}^{\infty}\text{Res}_{z=n}f(z) = \sum_{n=0}^\infty \left(-6\frac{(-1)^n}{(2n+1)^4}+\frac{(-1)^n H_n}{(2n+1)^3} \right)= -6\beta(4)+E_1\]
Therefore,
\[E_1+\frac{\pi^3}{8}\ln(2)+\frac{7\pi}{8}\zeta(3)+E_1-6\beta(4) = 0 \implies E_1 = \boxed{3\beta(4)-\dfrac{7\pi}{16}\zeta(3)-\dfrac{\pi^3}{16}\ln(2)} \]
Part IV : Evaluation of \(E_2\)
This time we use FS contour method to the function \(\displaystyle g(z)=\frac{\pi\csc(\pi z)\psi_1(-z)}{(2z+1)^2}\).
The sum of the residues at the negative integers is:
\[\sum_{n=1}^\infty \text{Res}_{z=-n}g(z) =-\sum_{n=1}^\infty \frac{(-1)^{n-1}\psi_1(n)}{(2n-1)^2} = -E_2 \]
The residue at \(z=-\dfrac{1}{2}\) is :
\[\text{Res}_{z=-1/2}g(z)=-\frac{7\pi}{2}\zeta(3)\]
The sum of the residues at the positive integers is:
\[\begin{align*} \sum_{n=0}^\infty \text{Res}_{z=n}g(z) &= \sum_{n=0}^\infty \left(12\frac{(-1)^n}{(2n+1)^4}+\frac{\pi^2 (-1)^n}{2(2n+1)^2} -\frac{(-1)^n\psi_1(n+1)}{(2n+1)^2}\right) \\ &= 12\beta(4)+\frac{\pi^2}{2}\mathbf{G}-E_2 \end{align*}\]
The sum of all the residues is zero. Therefore,
\[-E_2-\frac{7\pi}{2}\zeta(3)+12\beta(4)+\frac{\pi^2}{2}\mathbf{G}-E_2 = 0 \implies E_2 = \boxed{6\beta(4)-\dfrac{7\pi}{4}\zeta(3)+\dfrac{\pi^2}{4}\mathbf{G}}\]
Part V : The Final Answer
\[\begin{align*} I &= -\frac{\pi^3 \ln(2)}{32}-\frac{E_1}{2}+\frac{E_2}{4} \\ &= -\frac{\pi^3 \ln(2)}{32}-\frac{1}{2}\left(3\beta(4)-\frac{7\pi}{16}\zeta(3)-\frac{\pi^3}{16}\ln(2) \right)+\frac{1}{4}\left( 6\beta(4)-\frac{7\pi}{4}\zeta(3)+\frac{\pi^2}{4}\mathbf{G}\right) \\ &=\Large\boxed{\color{blue}{\dfrac{\pi^2}{16}\mathbf{G}-\dfrac{7\pi\zeta(3)}{32}}} \end{align*}\]
一个包含arctan与arctanh的积分的更多相关文章
- jquery[siblings]取得一个包含匹配的元素集合中每一个元素的所有唯一同辈元素的元素集合
取得一个包含匹配的元素集合中每一个元素的所有唯一同辈元素的元素集合,用于筛选同辈元素的表达式 $("#pageList").click(function(){ $(this).pa ...
- 最短路径(给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。 说明:每次只能向下或者向右移动一步。)
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 例: 输入: [ [1,3,1], [1,5,1], [ ...
- 定义一个包含标签inclusion_tag, 调用模板时报错.. 应该是路径 不对吧...我的templates 是放在app 目录下的.<待处理>
# 自定义模板标签. 标签的作用,在模板中 实现逻辑,如if ,for 等 from django.template import Library from datetime import datet ...
- EF5+MVC4系列(5) 删除的方法 1:系统推荐的先查询后remove删除的方法 2:自己new一个包含主键的类,然后 attach附加 remove删除;3:使用db.Entry 修改状态删除4:EntityState的几种状态
我们还是以订单表为例 1:系统推荐的方法,先查询出来,然后调用remove方法进行删除 我们删除id大于等于4的 static void Main(string[] args) { Delet ...
- hdu6003 Problem Buyer 贪心 给定n个区间,以及m个数,求从n个区间中任意选k个区间,满足m个数都能在k个区间中找到一个包含它的区间,如果一个区间包含了x,那么 该区间不能再去包含另一个数,即k>=m。求最小的k。如果不存在这样的k,输出“IMPOSSIBLE!”。
/** 题目:hdu6003 Problem Buyer 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6003 题意:给定n个区间,以及m个数,求从n个区 ...
- Go“一个包含nil指针的接口不是nil接口”踩坑
最近在项目中踩了一个深坑--"Golang中一个包含nil指针的接口不是nil接口",总结下分享出来,如果你不是很理解这句话,那推荐认真看下下面的示例代码,避免以后写代码时踩坑. ...
- Openfire Meetings插件是一个包含各种Jitsi项目(如VideoBridge和Meet)的实现
Openfire Meetings插件是一个包含各种Jitsi项目(如VideoBridge和Meet)的实现.要创建与Openfire Meetings一起使用的本机客户端,建议使用Jitsi项目提 ...
- prev([expr]) 取得一个包含匹配的元素集合中每一个元素紧邻的前一个同辈元素的元素集合。
prev([expr]) 概述 取得一个包含匹配的元素集合中每一个元素紧邻的前一个同辈元素的元素集合. 可以用一个可选的表达式进行筛选.只有紧邻的同辈元素会被匹配到,而不是前面所有的同辈元素.直线电机 ...
- parents([expr]) 取得一个包含着所有匹配元素的祖先元素的元素集合(不包含根元素)。可以通过一个可选的表达式进行筛选。
parents([expr]) 概述 取得一个包含着所有匹配元素的祖先元素的元素集合(不包含根元素).可以通过一个可选的表达式进行筛选.大理石平台检定规程 参数 exprStringV1.0 用于 ...
随机推荐
- caffe.bin用法
$ ./build/tools/caffe.bin caffe.bin: command line brew usage: caffe <command><aegs> comm ...
- 为什么html表单用post提交后,提交页面是空白
为什么html表单用post提交后,提交页面是空白? 因为post提交就应该用doPost()方法处理数据
- mvn + testng + allure 生成自动化测试报告
最近学了个新东西,使用java的testng测试框架做自动化测试.并且声称自动化报告. (1)创建maven工程 File-New-Other (2)创建testng类 当前import org.te ...
- RTMP服务器搭建(nginx+rtmp)
参考文章:https://obsproject.com/forum/resources/how-to-set-up-your-own-private-rtmp-server-using-nginx.5 ...
- X-Forwarded-For注入漏洞过程记录
一.题目地址 https://www.mozhe.cn/bug/detail/QWxmdFFhVURDay90L0wxdmJXSkl5Zz09bW96aGUmozhe 二.使用工具 FireFox浏览 ...
- 揭秘jQuery-选择器
先看代码: $(“li”)只选择第一个无序列表中的一个li元素,而不会选择另一个无序列表中的li元素 <!DOCTYPE html> <html> <head> & ...
- PHP 超全局变量之$GLOBALS
$GLOBALS——引用全局作用域中可用的全部变量. $GLOBALS一个包含了全部变量的全局组合数组.变量的名字就是数组的键.(即所有出现过的全局变量,都可通过$GLOBALS获取到) 注释: “S ...
- kuangbin专题 专题九 连通图 Critical Links UVA - 796
题目链接:https://vjudge.net/problem/UVA-796 题目:裸的求桥,按第一个元素升序输出即可. #include <iostream> #include < ...
- UNICODE编码UTF-16 中的Endian(FE FF) 和 Little Endian(FF FE)
从网上找到的两篇不错的文章,由于被网上多处转载,所以不知道源处,未能注明出处,希望作者见谅,如有意见请发信给我,谢谢! 第一篇很清晰. 介绍Unicode之前,首先要讲解一些基础知识.虽然跟Unico ...
- 吴裕雄 python 机器学习——数据预处理标准化StandardScaler模型
from sklearn.preprocessing import StandardScaler #数据预处理标准化StandardScaler模型 def test_StandardScaler() ...