SVM的优缺点
优点
- 可用于线性/非线性分类,也可以用于回归,泛化错误率低,也就是说具有良好的学习能力,且学到的结果具有很好的推广性。
- 可以解决小样本情况下的机器学习问题,可以解决高维问题,可以避免神经网络结构选择和局部极小点问题。
- SVM是最好的现成的分类器,现成是指不加修改可直接使用。并且能够得到较低的错误率,SVM可以对训练集之外的数据点做很好的分类决策。
缺点
- 对参数调节和和函数的选择敏感。
SVM的优缺点的更多相关文章
- SVM与LR的区别以及SVM的优缺点
对于异常数据,SVM比LR更好 SVM的优缺点: 优点:1.提供非常精确的分类器 2.更少的过拟合(因为有L2正则化项0.5||w||2),对噪声数据更加鲁棒(因为损失函数的原因) 缺点:1.SVM是 ...
- 机器学习笔记—svm算法(上)
本文申明:本文原创,如转载请注明原文出处. 引言:上一篇我们讲到了logistic回归,今天我们来说一说与其很相似的svm算法,当然问题的讨论还是在线性可分的基础下讨论的. 很多人说svm是目前最好的 ...
- SVM原理与实践
SVM迅速发展和完善,在解决小样本.非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.从此迅速的发展起来,已经在许多领域(生物信息学,文本和手写识别等)都取 ...
- 支持向量机(SVM)入门
一.简介 支持向量机,一种监督学习方法,因其英文名为support vector machine,故一般简称SVM. 通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器, ...
- 【Supervised Learning】支持向量机SVM (to explain Support Vector Machines (SVM) like I am a 5 year old )
Support Vector Machines 引言 内核方法是模式分析中非常有用的算法,其中最著名的一个是支持向量机SVM 工程师在于合理使用你所拥有的toolkit 相关代码 sklearn-SV ...
- SVM面试知识点总结
1. SVM 原理 SVM 是一种二类分类模型.它的基本思想是在特征空间中寻找间隔最大的分离超平面使数据得到高效的二分类,具体来讲,有三种情况(不加核函数的话就是个线性模型,加了之后才会升级为一个非线 ...
- 【机器学习入门笔记】第 2 课:SVM
Support Vector machines 为什么人们称一种算法为机器,我也不知道(俄罗斯人发明) 粗略的来说,支持向量机所做的就是去寻找分割线(separating) 或者通常称之为超平面,介于 ...
- python大战机器学习——支持向量机
支持向量机(Support Vector Machine,SVM)的基本模型是定义在特征空间上间隔最大的线性分类器.它是一种二类分类模型,当采用了核技巧之后,支持向量机可以用于非线性分类. 1)线性可 ...
- 各常用分类算法的优缺点总结:DT/ANN/KNN/SVM/GA/Bayes/Adaboosting/Rocchio
1决策树(Decision Trees)的优缺点 决策树的优点: 一. 决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义. 二. 对于决策树,数据的准备往往是简单或者是不必要的. ...
随机推荐
- 2.7.2 元素定位:frame 内定位 driver.switch_to.frame()
来源: http://blog.csdn.net/anniejunyan/article/details/23257327 Selenium + Webdriver 学习(五) frame下元素定位 ...
- eclipse非正常关闭,再打开后报错
Previous operation has not finished; run 'cleanup' if it was interrupted 启动任务管理器,将javaw.exe进程杀死,然后重启 ...
- rocketmq4.4配置日志路径等级
公司使用了最新的rocketmq框架,然后2天日志跑了快2个g.... 无奈网上只有4.2的教程...只好自己研究 环境rocketmq4.4 springboot 看源码找到配置日志等级和路径的地方 ...
- 在java中使用FFmpeg处理视频与音频
FFmpeg是一个非常好用的视频处理工具,下面讲讲如何在java中使用该工具类. 一.首先,让我们来认识一下FFmpeg在Dos界面的常见操作 1.拷贝视频,并指定新的视频的名字以及格式 ffmpeg ...
- MySql 怎么存取 Emoji
01.前言 Emoji 在我们生活中真的是越来越常见了,几乎每次发消息的时候不带个 Emoji,总觉得少了点什么,似乎干巴巴的文字已经无法承载我们丰富的感情了.对于我们开发者来说,如何将 Emoji ...
- c#项目使用webrtc的降噪模块方法
分离webrtc的降噪(Noise Suppression)部分 webrtc是Google开源的优秀音视频处理及传输代码库,其中包含了audio processing.video processin ...
- docker镜像 - 下载、创建镜像和导入导出镜像
实验环境 CentOS 7.5 安装并启动docker yum install -y docker systemctl start docker 镜像 安装镜像 docker pull [OPTION ...
- IntelliJ IDEA 2017.3尚硅谷-----设置界面
- SqlDataAdapter、DataSet、DataTable使用
原文链接:https://blog.csdn.net/zhang_hui_cs/article/details/7327395 using System.Data; using System.Data ...
- Tarjan-SCC-NOIP2015message
This article is made by Jason-Cow.Welcome to reprint.But please post the writer's address. http://ww ...