正解:网络流

解题报告:

传送门!

$umm$一看就是个最大流呗,,,就直接考虑怎么建图趴$QwQ$

首先看到这个高度减小其实就相当于对这个点的次数有约束,就显然拆点呗,流量为高度

然后$S$连向左侧所有有蜥蜴的点,流量为1.右侧所有边界点连向$T$,流量为$inf$.

然后就做完了?$QwQ$.

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define t(i) edge[i].to
#define n(i) edge[i].nxt
#define w(i) edge[i].wei
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define e(i,x) for(ri i=head[x];~i;i=n(i)) const int N=+,inf=1e9,M=;
int n,m,d,S,T,ed_cnt=-,head[N],as,cur[N],dep[N],sz,cnt,hei[M][M];
char s[N];
struct ed{int to,nxt,wei;}edge[N<<]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il int nam(ri x,ri y){return (x-)*m+y;}
il void ad(ri x,ri y,ri z){/*printf("%d -> %d : %d\n",y,x,z);*/edge[++ed_cnt]=(ed){x,head[y],z};head[y]=ed_cnt;edge[++ed_cnt]=(ed){y,head[x],};head[x]=ed_cnt;}
il bool bfs()
{
queue<int>Q;Q.push(S);memset(dep,,sizeof(dep));dep[S]=;
while(!Q.empty()){ri nw=Q.front();Q.pop();e(i,nw)if(w(i) && !dep[t(i)])dep[t(i)]=dep[nw]+,Q.push(t(i));}
return dep[T];
}
il int dfs(ri nw,ri flow)
{
if(nw==T || !flow)return flow;ri ret=;
for(ri &i=cur[nw];~i;i=n(i))
if(w(i) && dep[t(i)]==dep[nw]+){ri tmp=dfs(t(i),min(flow,w(i)));ret+=tmp,w(i)-=tmp;w(i^)+=tmp,flow-=tmp;}
return ret;
}
il int dinic(){ri ret=;while(bfs()){rp(i,S,T)cur[i]=head[i];while(int d=dfs(S,inf))ret+=d;}return ret;} int main()
{
// freopen("2472.in","r",stdin);freopen("2472.out","w",stdout);
memset(head,-,sizeof(head));n=read();m=read();d=read();sz=n*m;S=;T=*sz+;
rp(i,,n){scanf("%s",s+);rp(j,,m){hei[i][j]=s[j]^'';if(!hei[i][j])continue;ri pos=nam(i,j);ad(n*m+pos,pos,hei[i][j]);}}
rp(i,,n){scanf("%s",s+);rp(j,,m)if(s[j]=='L')ad(nam(i,j),S,),++cnt;}
rp(i,,n)
{
rp(j,,m)
{
if(!hei[i][j])continue;
bool gdgs=;
rp(p,-d,d)
{
rp(q,abs(p)-d,d-abs(p))
{
ri to_x=i+p,to_y=j+q;
if(to_x> && to_y> && to_x<=n && to_y<=m)ad(nam(to_x,to_y),sz+nam(i,j),inf);
else gdgs=;
}
}
if(gdgs)ad(T,sz+nam(i,j),inf);
}
}
printf("%d\n",cnt-dinic());
return ;
}

洛谷$P$2472 蜥蜴 $[SCOI2007]$ 网络流的更多相关文章

  1. 洛谷P2402 奶牛隐藏(网络流,二分答案,Floyd)

    洛谷题目传送门 了解网络流和dinic算法请点这里(感谢SYCstudio) 题目 题目背景 这本是一个非常简单的问题,然而奶牛们由于下雨已经非常混乱,无法完成这一计算,于是这个任务就交给了你.(奶牛 ...

  2. 洛谷$P2604\ [ZJOI2010]$网络扩容 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 昂第一问跑个最大流就成不说$QwQ$ 然后第二问,首先原来剩下的边就成了费用为0的边?然后原来的所有边连接的两点都给加上流量为$inf$费用为$w$的边,保 ...

  3. 洛谷P2770 双路DP // 网络流

    https://www.luogu.org/problemnew/show/P2770 第一眼看过去,觉得这不是一个经典的双路DP模型吗,将一条过去一条回来互不相交的路径看作是起点出发了两条路径一起走 ...

  4. 3150luogu洛谷

    若说代码 那真的是很水 但是 思想却有点意思 这道题是洛谷博弈论专题的第一道入门题, 然而刚开始我是不会做的, 毕竟是道入门题, 我博弈论还没入门呢. 这道题的做法就是: 如果m为偶数, 那么先手赢( ...

  5. 洛谷 P1401 城市(二分+网络流)

    题目描述 N(2<=n<=200)个城市,M(1<=m<=40000)条无向边,你要找T(1<=T<=200)条从城市1到城市N的路,使得最长的边的长度最小,边不能 ...

  6. P1219 八皇后 洛谷

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  7. [洛谷P2472] [SCOI2007]蜥蜴

    题目链接: 蜥蜴 题目分析: 一道网络流,先来分析一下问题: 在一个\(r*c\)的图中分布了一些数,其他地方都用\(0\)填充,我们分别从指定的一些数出发,每次可以移动到周围距离为\(d\)以内的数 ...

  8. 洛谷$P2469\ [SDOI2010]$ 星际竞速 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 题目好长昂,,,大概概括下就说有$m$条单向边,$n$个点,每条边有一条边权,每个点有一个点权,然后问每个点都要到达一遍的最小代价是多少$QwQ$? 发现有 ...

  9. 洛谷$P2153\ [SDOI2009]$ 晨跑 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 题目好长昂,,,大概概括下$QwQ$.就说有$n$个节点$m$条边,然后要求每次走的路径都不一样,问最多能走多少次,然后在次数最多的前提下问路径最短是多少$ ...

随机推荐

  1. hdu 1077 (圆交)

    Problem - 1077 我们可以知道,当这个单位圆可以覆盖到最多的点的时候,必定最少有两个点位于这个圆的圆周上,于是就有网上众多的O(N^3)的枚举两个在圆上的点的暴搜做法. 然而这题是可以用圆 ...

  2. FastReport模板设计和调用

    FastReport是功能齐全的报表控件,使开发者可以快速并高效地为·NET/VCL/COM/ActiveX应用程序添加报表支持.最近一个项目就涉及到了FastReport报表的应用.这里简单记录下( ...

  3. php parse_url linux 解析问题

    耕毅 解析url函数parse_url() (PHP 4, PHP 5, PHP 7) parse_url — 解析 URL,返回其组成部分 mixed parse_url ( string $url ...

  4. 2019年ICPC南昌网络赛 J. Distance on the tree 树链剖分+主席树

    边权转点权,每次遍历到下一个点,把走个这条边的权值加入主席树中即可. #include<iostream> #include<algorithm> #include<st ...

  5. Tenka1 Programmer Beginner Contest D IntegerotS(补)

    当时没做出来,官方题解没看懂,就看别人提交的代码,刚对着别人代码调了几组数据,才发现,思路差不多,不过,原来是这样实现啊,果然我还是很菜 思路:题目要求是选取的这些数字全部进行OR运算,结果<= ...

  6. 解决电脑性能一般,打开webstorm后,电脑比较卡的问题

    刚到一公司实习,要求使用webstrom开发前端,但安装后发现自己的电脑很卡,特别是在运行项目时,卡的不要不要的. 后来,发现一奇淫技巧,用sublime代替webstrom,但是没法启动项目啊 找到 ...

  7. JS 动态表格

    表格 在script里面使用innerHTML获取标签体的内容,然后进行添加. 删除则是不断的获取父节点,利用父节点删除子节点. 在做这个的时候,要主要获取表格table的对象有两种方式,一是getE ...

  8. 前端开发之BOM和DOM

    BOM BOM:是指浏览器对象模型,它使JavaScript可以和浏览器进行交互. 1,navigator对象:浏览器对象,通过这个对象可以判定用户所使用的浏览器,包含了浏览器相关信息. naviga ...

  9. 浅谈集合框架三、Map常用方法及常用工具类

    最近刚学完集合框架,想把自己的一些学习笔记与想法整理一下,所以本篇博客或许会有一些内容写的不严谨或者不正确,还请大神指出.初学者对于本篇博客只建议作为参考,欢迎留言共同学习. 之前有介绍集合框架的体系 ...

  10. 2018-9-1-win2d-画出好看的图形

    title author date CreateTime categories win2d 画出好看的图形 lindexi 2018-09-01 16:25:40 +0800 2018-2-13 17 ...