一、实验目的
(1)熟悉 Spark 的 RDD 基本操作及键值对操作;

(2)熟悉使用 RDD 编程解决实际具体问题的方法。

二、实验平台
操作系统:centos6.4

Spark 版本:1.5.0

三、实验内容

实验一:

1.spark-shell 交互式编程

请到本教程官网的“下载专区”的“数据集”中下载 chapter5-data1.txt,该数据集包含 了某大学计算机系的成绩,数据格式如下所示:

首先开始我们的第一步,打开linux系统中的终端。

请根据给定的实验数据,在 spark-shell 中通过编程来计算以下内容:

将Data01.txt文件放置在usr/local/sparkdata/中

新建/usr/local/sparkdata文件夹

mkdir /usr/local/sparkdata

将Data01.txt文件放置在sparkdata中

发现权限不够,给/usr/local/sparkdata赋予操作权限

chmod 777 /usr/local/spakrdata

之后将Data01.txt文件移动到sparkdata中

(1)该系总共有多少学生;

val lines = sc.textFile("file:///usr/local/sparkdata/Data01.txt")
val par = lines.map(row=>row.split(",")(0))
val distinct_par = par.distinct()
distinct_par.count

(2)该系共开设来多少门课程;

val lines = sc.textFile("file:///usr/local/sparkdata/Data01.txt")
val par = lines.map(row=>row.split(",")(1))
val distinct_par = par.distinct()
distinct_par.count

(3)Tom 同学的总成绩平均分是多少;

val lines = sc.textFile("file:///usr/local/sparkdata/Data01.txt")
lines.filter(row=>row.split(",")(0)=="Tom")
.map(row=>(row.split(",")(0),row.split(",")(2).toInt))
.mapValues(x=>(x,1)).
reduceByKey((x,y) => (x._1+y._1,x._2 + y._2))
.mapValues(x => (x._1 / x._2))
.collect()

(4)求每名同学的选修的课程门数;

val line=sc.textFile("file:///usr/local/sparkdata/Data01.txt")

line.map(row=>(row.split(",")(0),row.split(",")(1))).

mapValues(x=>(1)).

reduceByKey((x,y)=>(x+y)).

collect()

(5)该系 DataBase 课程共有多少人选修;

val line=sc.textFile("file:///usr/local/sparkdata/Data01.txt")

line.filter(row=>row.split(",")(1)=="DataBase").

count()

(6)各门课程的平均分是多少;

val line=sc.textFile("file:///usr/local/sparkdata/Data01.txt")

line.map(row=>(row.split(",")(1),row.split(",")(2).toInt)).

mapValues(x=>(x,1)).

reduceByKey((x,y)=>(x._1+y._1,x._2+y._2)).

mapValues(x=>(x._1/x._2)).

collect()

(7)使用累加器计算共有多少人选了 DataBase 这门课。

val lines = sc.textFile("file:///usr/local/sparkdata/Data01.txt")
val pare = lines.filter(row=>row.split(",")(1)=="DataBase").
map(row=>(row.split(",")(1),1))
val accum =sc.accumulator(0)
pare.values.foreach(x => accum.add(x))
accum.value

实验二

2.编写独立应用程序实现数据去重
对于两个输入文件 A 和 B,编写 Spark 独立应用程序,对两个文件进行合并,并剔除其 中重复的内容,得到一个新文件 C。下面是输入文件和输出文件的一个样例,供参考。 输入文件 A 的样例如下:

20170101 x

20170102 y

20170103 x

20170104 y

20170105 z

20170106 z

输入文件 B 的样例如下:

20170101 y

20170102 y

20170103 x

20170104 z

20170105 y

根据输入的文件 A 和 B 合并得到的输出文件 C 的样例如下:

20170101 x

20170101 y

20170102 y

20170103 x

20170104 y

20170104 z

20170105 y

20170105 z

20170106 z

package sn
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.HashPartitioner object RemDup
{
def main(args:Array[String])
{
val conf = new SparkConf().setAppName("RemDup")
val sc = new SparkContext(conf)
val dataFile = "file:///usr/local/sparkdata/data42"
val data = sc.textFile(dataFile,)
val res = data.filter(_.trim().length>).map(line=>(line.trim,"")).partitionBy(new HashPartitioner()).groupByKey().sortByKey().keys
res.saveAsTextFile("result")
}
}

实验三

3.编写独立应用程序实现求平均值问题
每个输入文件表示班级学生某个学科的成绩,每行内容由两个字段组成,第一个是学生 名字,第二个是学生的成绩;编写 Spark 独立应用程序求出所有学生的平均成绩,并输出到 一个新文件中。下面是输入文件和输出文件的一个样例,供参考。

Algorithm 成绩:

小明 92

小红 87

小新 82

小丽 90

Database 成绩:

小明 95

小红 81

小新 89

小丽 85

Python 成绩:

小明 82

小红 83

小新 94

小丽 91

平均成绩如下:

(小红,83.67)

(小新,88.33)

(小明,89.67)

(小丽,88.67)

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.HashPartitioner object AvgScore
{
def main(args:Array[String])
{
val conf = new SparkConf().setAppName("AvgScore")
val sc = new SparkContext(conf)
val dataFile = "file:///usr/local/spark/mycode/avgscore/data"
val data = sc.textFile(dataFile,3)
val res=data.filter(_.trim().length>0).map(line=>(line.split(" ")(0).trim(),line.split(" ")(1).trim().toInt)).partitionBy(new HashPartitioner(1)).groupByKey().map(x=>{
var n=0
var sum=0.0
for(i<-x._2){
sum=sum+i
n=n+1
}
val avg=sum/n
val format=f"$avg%1.2f".toDouble
(x._1,format)
})
res.saveAsTextFile("result2")
}
}

spark实验(四)--RDD编程(1)的更多相关文章

  1. 02、体验Spark shell下RDD编程

    02.体验Spark shell下RDD编程 1.Spark RDD介绍 RDD是Resilient Distributed Dataset,中文翻译是弹性分布式数据集.该类是Spark是核心类成员之 ...

  2. Spark学习之RDD编程(2)

    Spark学习之RDD编程(2) 1. Spark中的RDD是一个不可变的分布式对象集合. 2. 在Spark中数据的操作不外乎创建RDD.转化已有的RDD以及调用RDD操作进行求值. 3. 创建RD ...

  3. Spark学习之RDD编程总结

    Spark 对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称 RDD).RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外 ...

  4. spark 中的RDD编程 -以下基于Java api

    1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动 ...

  5. Spark学习笔记——RDD编程

    1.RDD——弹性分布式数据集(Resilient Distributed Dataset) RDD是一个分布式的元素集合,在Spark中,对数据的操作就是创建RDD.转换已有的RDD和调用RDD操作 ...

  6. 实验4 RDD编程初级实践

    1.spark-shell交互式编程 (1) 该系总共有多少学生 scala> val lines = sc.textFile("file:///usr/local/spark/spa ...

  7. Spark学习(2) RDD编程

    什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.弹性.里面的元素可并行计算的集合 RDD允 ...

  8. 假期学习【四】RDD编程实验一

    1.今天把Spark编程第三个实验的Scala独立程序编程写完了.使用 sbt 打包 Scala 程序,然后提交到Spark运行. 2.完成了实验四的第一项 (1)该系总共有多少学生:   map(t ...

  9. 假期学习【五】RDD编程实验四

    今天完成了实验四的第二问和第三问 第二题 对于两个输入文件 A 和 B,编写 Spark 独立应用程序,对两个文件进行合并,并剔除其 中重复的内容,得到一个新文件 C.下面是输入文件和输出文件的一个样 ...

随机推荐

  1. win7系统Java 开发环境配置

    我的天啊,博客园写了两年九个月,终于有六个粉丝啦,哈哈哈哈哈哈哈哈哈,谢谢大家的关注 进入正题,java环境配置,我要学java了,人生在于瞎折腾. 久闻java大名,但是没接触过,但java环境配置 ...

  2. 题解【CJOJ2608】[JZOJ 100043]第k小数

    P2608 - [JZOJ 100043]第k小数 Description 有两个非负整数数列,元素个数分别为N和M.从两个数列中分别任取一个数相乘,这样一共可以得到N*M个数,询问这N*M个数中第K ...

  3. b 解题报告

    本题已收录至2019/9/15 本周总结 题目 [问题描述] Hja有一棵\(n\)个点的树,树上每个点有点权,每条边有颜色.一条路径的权值是这条路径上所有点的点权和,一条合法的路径需要满足该路径上任 ...

  4. fileupload插件调用upload.parseRequest(request)解析得到空值问题

    得到的list长度是0,项目配置不能改变,没办法了,只能将HttpServletRequest强换成DefaultMultipartHttpServletRequest ,直接获取表单中的字段了.方法 ...

  5. org.apache.httpcomponents.httpclient

    apache org doc :http://hc.apache.org/httpcomponents-client-ga/tutorial/html/fundamentals.html#d5e49 ...

  6. 《Qt Quick核心编程》勘误

    本文将结合章节和问题发现的先后顺序来编排,具体是酱紫的:每个章节单列出来作为本文的一节,在该节下按时间顺序列出发现的问题. 第4章 1). 51页第六行:“ iconName 属性定图标的名字”,其中 ...

  7. 给Python初学者的一些编程技巧

    展开这篇文章主要介绍了给Python初学者的一些编程技巧,皆是基于基础的一些编程习惯建议,需要的朋友可以参考下交换变量 x = 6y = 5 x, y = y, x print x>>&g ...

  8. JVM中的动态语言支持简介

    抽丝剥茧 细说架构那些事——[优锐课] 从版本6开始,JVM已扩展为支持现代动态语言(也称为脚本语言).Java8的发行为这一领域提供了更多动力.感到这种支持的必要性是因为Java作为一种语言固有地是 ...

  9. TXT文件也能挂木马

    什么?TXT文件也能挂马?是的!TXT文件不仅有挂马的危险,而且有时候可能非常的危险!不过,严格说来,应该给这个所谓的"TXT"文件加个引号,因为它们是看起来是TXT文件,实则是隐 ...

  10. ES+VBA 实现批量添加网络图片

    需求:通过自动读取相对应列的图片网址,自动添加到图片列,从而完成添加图片 案例:需要将备注列的图片网址添加到图片列的内容 关键代码 '引入API Private Declare Function UR ...