一、MNIST数据集分类简单版本

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)

#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])

#创建一个简单的神经网络
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x,W)+b)

#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#初始化变量
init = tf.global_variables_initializer()

#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

with tf.Session() as sess:
  sess.run(init)
  for epoch in range(21):
    for batch in range(n_batch):
      batch_xs,batch_ys = mnist.train.next_batch(batch_size)
      sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})

    acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
    print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

MNIST数据集的更多相关文章

  1. Caffe初试(二)windows下的cafee训练和测试mnist数据集

    一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试 ...

  2. 【Mxnet】----1、使用mxnet训练mnist数据集

    使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list

  3. 从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel

    一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数 ...

  4. 使用libsvm对MNIST数据集进行实验

    使用libsvm对MNIST数据集进行实验 在学SVM中的实验环节,老师介绍了libsvm的使用.当时看完之后感觉简单的说不出话来. 1. libsvm介绍 虽然原理要求很高的数学知识等,但是libs ...

  5. mnist数据集转换bmp图片

    Mat格式mnist数据集下载地址:http://www.cs.nyu.edu/~roweis/data.html Matlab转换代码: load('mnist_all.mat'); type = ...

  6. caffe在windows编译project及执行mnist数据集測试

    caffe在windows上的配置和编译能够參考例如以下的博客: http://blog.csdn.net/joshua_1988/article/details/45036993 http://bl ...

  7. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  8. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

  9. 学习TensorFlow,邂逅MNIST数据集

    如果说"Hello Word!"是程序员的第一个程序,那么MNIST数据集,毫无疑问是机器学习者第一个训练的数据集,本文将使用Google公布的TensorFLow来学习训练MNI ...

  10. Python实现bp神经网络识别MNIST数据集

    title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] cat ...

随机推荐

  1. Java零散记录

    接口不能被实例化,所以其成员变量必须为不可修改的,就是常量.

  2. 2018-11-17-win10-uwp-在-xaml-让-TextBlock-换行

    title author date CreateTime categories win10 uwp 在 xaml 让 TextBlock 换行 lindexi 2018-11-17 16:2:29 + ...

  3. mysql find_in_set 与 in 的用法与区别,mysql范围搜索,mysql范围查询

    mysql find_in_set 与 in 的用法与区别 1.find_in_set 用于模糊查询,并且数据库中的值是用英文逗号分隔的: 例如: (1).去字段中查询 select find_in_ ...

  4. git authentication failed for 或 fatal:not a git repository

    第一种解决 (我的是第一种解决) github上更改密码之后,我在本地操作git发现出错,错误代码如上,在网上搜了一圈,没有解决问题,后发现需要进行如下操作: 进入控制面板>用户账号>凭据 ...

  5. eclipse要修改的配置

    1. 修改 html的字体大小 window->preferences->General--> appearance--> Colors and fonts-->basi ...

  6. Struts2 注释类型

    Struts 2 应用程序可以使用Java5注释作为替代XML和Java属性配置.这里是清单的不同的类别有关的最重要的注解: 命名空间注释(动作注释): @ Namespace注释允许在Action类 ...

  7. 怎么安装GUI

    python安装easygui的过程中,下载的是0.97.安装的时候提示setuptools模块不存在.然后又去安装setuptools等等, 真麻烦.也没有成功.后来又下载了0.96的.才成功.下面 ...

  8. HTML基础常识

    什么是HTML? 超文本标记语言,用来制作网页 浏览器常识: 常见浏览器: 谷歌(Chrome).苹果(Safari) . IE(Edge).欧朋(Opera).火狐(Firefox) 浏览器内核:浏 ...

  9. react-native-swiper使用的坑

    今天使用引入react-native-swiper组件使用轮播图时,发现报如下错误: Invarint Violation:ViewPagerAndroid has been removed from ...

  10. tensorflow之tf.train.exponential_decay()指数衰减法

    exponential_decay(learning_rate,  global_steps, decay_steps, decay_rate, staircase=False, name=None) ...