单例模式

单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在。当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场。

比如,某个服务器程序的配置信息存放在一个文件中,客户端通过一个 AppConfig 的类来读取配置文件的信息。如果在程序运行期间,有很多地方都需要使用配置文件的内容,也就是说,很多地方都需要创建 AppConfig 对象的实例,这就导致系统中存在多个 AppConfig 的实例对象,而这样会严重浪费内存资源,尤其是在配置文件内容很多的情况下。事实上,类似 AppConfig 这样的类,我们希望在程序运行期间只存在一个实例对象。

在 Python 中,我们可以用多种方法来实现单例模式

实现单例模式的几种方式

1.使用模块

其实,Python 的模块就是天然的单例模式,因为模块在第一次导入时,会生成 .pyc 文件,当第二次导入时,就会直接加载 .pyc 文件,而不会再次执行模块代码。因此,我们只需把相关的函数和数据定义在一个模块中,就可以获得一个单例对象了。如果我们真的想要一个单例类,可以考虑这样做:

mysingleton.py

class Singleton(object):
def foo(self):
pass
singleton = Singleton()

将上面的代码保存在文件 mysingleton.py 中,要使用时,直接在其他文件中导入此文件中的对象,这个对象即是单例模式的对象

from a import singleton

2.使用装饰器

def Singleton(cls):
_instance = {} def _singleton(*args, **kargs):
if cls not in _instance:
_instance[cls] = cls(*args, **kargs)
return _instance[cls] return _singleton @Singleton
class A(object):
a = 1 def __init__(self, x=0):
self.x = x a1 = A(2)
a2 = A(3)

3.使用类

class Singleton(object):

    def __init__(self):
pass @classmethod
def instance(cls, *args, **kwargs):
if not hasattr(Singleton, "_instance"):
Singleton._instance = Singleton(*args, **kwargs)
return Singleton._instance

一般情况,大家以为这样就完成了单例模式,但是这样当使用多线程时会存在问题

class Singleton(object):

    def __init__(self):
pass @classmethod
def instance(cls, *args, **kwargs):
if not hasattr(Singleton, "_instance"):
Singleton._instance = Singleton(*args, **kwargs)
return Singleton._instance import threading def task(arg):
obj = Singleton.instance()
print(obj) for i in range(10):
t = threading.Thread(target=task,args=[i,])
t.start()

程序执行后,打印结果如下:

<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>

看起来也没有问题,那是因为执行速度过快,如果在init方法中有一些IO操作,就会发现问题了,下面我们通过time.sleep模拟

我们在上面__init__方法中加入以下代码:

    def __init__(self):
import time
time.sleep(1)

重新执行程序后,结果如下

<__main__.Singleton object at 0x034A3410>
<__main__.Singleton object at 0x034BB990>
<__main__.Singleton object at 0x034BB910>
<__main__.Singleton object at 0x034ADED0>
<__main__.Singleton object at 0x034E6BD0>
<__main__.Singleton object at 0x034E6C10>
<__main__.Singleton object at 0x034E6B90>
<__main__.Singleton object at 0x034BBA30>
<__main__.Singleton object at 0x034F6B90>
<__main__.Singleton object at 0x034E6A90>

问题出现了!按照以上方式创建的单例,无法支持多线程

解决办法:加锁!未加锁部分并发执行,加锁部分串行执行,速度降低,但是保证了数据安全

import time
import threading
class Singleton(object):
_instance_lock = threading.Lock() def __init__(self):
time.sleep(1) @classmethod
def instance(cls, *args, **kwargs):
with Singleton._instance_lock:
if not hasattr(Singleton, "_instance"):
Singleton._instance = Singleton(*args, **kwargs)
return Singleton._instance def task(arg):
obj = Singleton.instance()
print(obj)
for i in range(10):
t = threading.Thread(target=task,args=[i,])
t.start()
time.sleep(20)
obj = Singleton.instance()
print(obj)

打印结果如下:

<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>

这样就差不多了,但是还是有一点小问题,就是当程序执行时,执行了time.sleep(20)后,下面实例化对象时,此时已经是单例模式了,但我们还是加了锁,这样不太好,再进行一些优化,把intance方法,改成下面的这样就行:

    @classmethod
def instance(cls, *args, **kwargs):
if not hasattr(Singleton, "_instance"):
with Singleton._instance_lock:
if not hasattr(Singleton, "_instance"):
Singleton._instance = Singleton(*args, **kwargs)
return Singleton._instance

这样,一个可以支持多线程的单例模式就完成了

import time
import threading
class Singleton(object):
_instance_lock = threading.Lock() def __init__(self):
time.sleep(1) @classmethod
def instance(cls, *args, **kwargs):
if not hasattr(Singleton, "_instance"):
with Singleton._instance_lock:
if not hasattr(Singleton, "_instance"):
Singleton._instance = Singleton(*args, **kwargs)
return Singleton._instance def task(arg):
obj = Singleton.instance()
print(obj)
for i in range(10):
t = threading.Thread(target=task,args=[i,])
t.start()
time.sleep(20)
obj = Singleton.instance()
print(obj)

这种方式实现的单例模式,使用时会有限制,以后实例化必须通过 obj = Singleton.instance()

如果用 obj=Singleton() ,这种方式得到的不是单例

4.基于__new__方法实现(推荐使用,方便)

通过上面例子,我们可以知道,当我们实现单例时,为了保证线程安全需要在内部加入锁

我们知道,当我们实例化一个对象时,是先执行了类的__new__方法(我们没写时,默认调用object.__new__),实例化对象;然后再执行类的__init__方法,对这个对象进行初始化,所有我们可以基于这个,实现单例模式

import threading
class Singleton(object):
_instance_lock = threading.Lock() def __init__(self):
pass def __new__(cls, *args, **kwargs):
if not hasattr(Singleton, "_instance"):
with Singleton._instance_lock:
if not hasattr(Singleton, "_instance"):
Singleton._instance = object.__new__(cls)
return Singleton._instance obj1 = Singleton()
obj2 = Singleton()
print(obj1,obj2) def task(arg):
obj = Singleton()
print(obj) for i in range(10):
t = threading.Thread(target=task,args=[i,])
t.start()

打印结果如下:

<__main__.Singleton object at 0x038B33D0> <__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>

采用这种方式的单例模式,以后实例化对象时,和平时实例化对象的方法一样 obj = Singleton()

5.基于metaclass方式实现

相关知识

"""
1.类由type创建,创建类时,type的__init__方法自动执行,类() 执行type的 __call__方法(类的__new__方法,类的__init__方法)
2.对象由类创建,创建对象时,类的__init__方法自动执行,对象()执行类的 __call__ 方法
"""

例子:

class Foo:
def __init__(self):
pass def __call__(self, *args, **kwargs):
pass obj = Foo()
# 执行type的 __call__ 方法,调用 Foo类(是type的对象)的 __new__方法,用于创建对象,然后调用 Foo类(是type的对象)的 __init__方法,用于对对象初始化。 obj() # 执行Foo的 __call__ 方法

元类的使用

class SingletonType(type):
def __init__(self,*args,**kwargs):
super(SingletonType,self).__init__(*args,**kwargs) def __call__(cls, *args, **kwargs): # 这里的cls,即Foo类
print('cls',cls)
obj = cls.__new__(cls,*args, **kwargs)
cls.__init__(obj,*args, **kwargs) # Foo.__init__(obj)
return obj class Foo(metaclass=SingletonType): # 指定创建Foo的type为SingletonType
def __init__(self,name):
self.name = name
def __new__(cls, *args, **kwargs):
return object.__new__(cls) obj = Foo('xx')

实现单例模式

import threading

class SingletonType(type):
_instance_lock = threading.Lock()
def __call__(cls, *args, **kwargs):
if not hasattr(cls, "_instance"):
with SingletonType._instance_lock:
if not hasattr(cls, "_instance"):
cls._instance = super(SingletonType,cls).__call__(*args, **kwargs)
return cls._instance class Foo(metaclass=SingletonType):
def __init__(self,name):
self.name = name obj1 = Foo('name')
obj2 = Foo('name')
print(obj1,obj2)

python中几种单例模式的实现的更多相关文章

  1. Python中3种内建数据结构:列表、元组和字典

    Python中3种内建数据结构:列表.元组和字典 Python中有3种内建的数据结构:列表.元组和字典.参考简明Python教程 1. 列表 list是处理一组有序项目的数据结构,即你可以在一个列表中 ...

  2. Python中三种基本结构的语句

    选择语句 if 条件判断 : # 条件可以加括号也可以不加括号 -- else: -- Python中没有switch语句这是可以使用if exp:.... elif exp:来代替 if 判断条件1 ...

  3. python中两种栈实现方式的性能对比

    在计算机的世界中,同一个问题,使用不同的数据结构和算法实现,所使用的资源有很大差别 为了方便量化python中算法的资源消耗,对性能做测试非常有必要,这里针对stack做了python语言 下的性能分 ...

  4. Python中四种运行其他程序的方式

    原文地址:http://blog.csdn.net/jerry_1126/article/details/46584179 在Python中,可以方便地使用os模块来运行其他脚本或者程序,这样就可以在 ...

  5. Python黑科技 | Python中四种运行其他程序的方式

    在Python中,可以方便地使用os模块来运行其他脚本或者程序,这样就可以在脚本中直接使用其他脚本或程序提供的功能,而不必再次编写实现该功能的代码.为了更好地控制运行的进程,可以使用win32proc ...

  6. python中几种自动微分库

    简单介绍下python的几个自动求导工具,tangent.autograd.sympy: 在各种机器学习.深度学习框架中都包含了自动微分,微分主要有这么四种:手动微分法.数值微分法.符号微分法.自动微 ...

  7. 二、python 中五种常用的数据类型

    一.字符串 单引号定义: str1 = 'hello' 双引号定义: str1 = "hello" 三引号定义:""" 人生苦短, 我用python! ...

  8. Python中两种处理错误方法的比较

    我所说的处理错误的方法,其实是try:,except和raise这两种. 首先抛出一个实例, dictt={'a':1,'b':2,'c':3} try: if dictt['d']>1: #字 ...

  9. python 中几种基本的矩阵操作应用

    在图像处理中,python 的矩阵运算经常会用到一些简单的操作,可是,由于好久没用,很多东西还是忘记了,这里做个备忘: #-*-coding:utf-8-*- import numpy as np a ...

随机推荐

  1. 从NoSQL到NewSQL数据库

  2. create-react-app 创建项目失败

    创建失败后查阅相关资料,亲测删除 C:\Users\Administrator\AppData\Roaming\npm-cache\ 该文件夹下所有内容后成功.

  3. 爬虫的终极形态:nightmare

    爬虫的终极形态:nightmare nightmare 是一个基于 electron 的自动化库(意思是说它自带浏览器),用于实现爬虫或自动化测试.相较于传统的爬虫框架(scrapy/pyspider ...

  4. fastjson循环引用 问题@ManyToOne @OneToOne返回数据中"$ref"问题

    返回数据为 这样前端就无法获取正确数据(至少是不改变代码,不增加代码量的情况下) 所以还是改返回值比较好 根据查阅 https://blog.csdn.net/qq_38487524/article/ ...

  5. 高性能非阻塞 Web 服务器 Undertow

    Undertow 简介 Undertow是一个用java编写的.灵活的.高性能的Web服务器,提供基于NIO的阻塞和非阻塞API. Undertow的架构是组合式的,可以通过组合各种小型的目的单一的处 ...

  6. Zookeeper教程

    由于zookeeper使用java语言编写,因此我们运行zookeeper需要保证你的服务器上已经安装了jdk. 安装zk 本文介绍的前提是已经默认安装好了jdk,Linux安装JDK教程https: ...

  7. springmvc:自定义类型转换器代码编写

    字符串转换日期: 1.自定义一个类 /** * 字符串转换日期 */ public class StringToDateConverter implements Converter<String ...

  8. 跟我一起写一个chrome扩展程序

    在我没有看这本书之前,我都想象不到,原来chrome扩展程序可以这样写,真的非常有意思. 就是用最简单最基础的代码,然后就实现了一些非常有意思的玩意儿. 先看效果图 实际运用要和现实联系在一起,经历和 ...

  9. Opencv中RGB通道/HSV通道并分离

    OpenCV中HSV颜色模型及颜色分量范围 opencv HSV 颜色模型(H通道取值 && CV_BGR2HSV_FULL) [opencv]在hsv颜色空间识别区域颜色 将原图分离 ...

  10. loj6402 校门外的树(dp,多项式求逆)

    https://loj.ac/problem/6402 庆祝一下,,,第一个我自己做出来的,,,多项式的题(没办法,我太弱 虽然用了2个小时才想出来,但这毕竟是0的突破…… 首先声明,虽然我写的题解很 ...