(转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布
1. Gamma函数
首先我们可以看一下Gamma函数的定义:
Gamma的重要性质包括下面几条:
1. 递推公式:
2. 对于正整数n, 有
因此可以说Gamma函数是阶乘的推广。
3.
4.
关于递推公式,可以用分部积分完成证明:
2. Beta函数
B函数,又称为Beta函数或者第一类欧拉积分,是一个特殊的函数,定义如下:
B函数具有如下性质:
3. Beta分布
在介绍贝塔分布(Beta distribution)之前,需要先明确一下先验概率、后验概率、似然函数以及共轭分布的概念。
1. 通俗的讲,先验概率就是事情尚未发生前,我们对该事发生概率的估计。利用过去历史资料计算得到的先验概率,称为客观先验概率; 当历史资料无从取得或资料不完全时,凭人们的主观经验来判断而得到的先验概率,称为主观先验概率。例如抛一枚硬币头向上的概率为0.5,这就是主观先验概率。
2. 后验概率是指通过调查或其它方式获取新的附加信息,利用贝叶斯公式对先验概率进行修正,而后得到的概率。
3. 先验概率和后验概率的区别:先验概率不是根据有关自然状态的全部资料测定的,而只是利用现有的材料(主要是历史资料)计算的;后验概率使用了有关自然状态更加全面的资料,既有先验概率资料,也有补充资料。另外一种表述:先验概率是在缺乏某个事实的情况下描述一个变量;而后验概率(Probability of outcomes of an experiment after it has been performed and a certain event has occured.)是在考虑了一个事实之后的条件概率。
4. 共轭分布(conjugacy):后验概率分布函数与先验概率分布函数具有相同形式。
先验概率和后验概率的关系为:
Beta分布的概率密度函数为:
随机变量X服从参数为 α , β的Β分布通常写作:
Beta分布与Gamma分布的关系为:
在beta分布中,B函数是一个标准化函数,它只是为了使得这个分布的概率密度积分等于1才加上的。后面狄利克雷的B函数也是一样的目的。
用一句话来说,beta分布可以看作一个概率的概率分布,当你不知道一个东西的具体概率是多少时,它可以给出了所有概率出现的可能性大小。
Beta分布的期望与方差分别为:
4. Beta分布是二项分布的共轭先验
这个结论很重要,在实际中应用也相当广泛。
在这之前,我们先简单回顾一下伯努利分布与二项分布。
伯努利分布(Bernoulli distribution)有称为0-1分布,伯努利分布式基于伯努利实验(Bernoulli trial)而来。
伯努利试验是只有两种可能结果的单次随机试验,即对于一个随机变量X来说:
伯努利实验本质上即为"YES OR NO"的问题。最常见的一个例子就是抛硬币。
如果进行一次伯努利实验,假设成功(X=1)的概率为p (0 <= p <= 1),失败(X=0)的概率为1−p,称随机变量X服从伯努利分布。
二项分布(Binomial distribution)是n重伯努利试验成功次数的离散概率分布。
如果试验E是一个n重伯努利试验,每次伯努利试验的成功概率为p,X代表成功的次数,则X的概率分布是二项分布,记为X~B(n,p),其概率质量函数为:
从上面的定义很明显可以看出,伯努利分布是二项分布在n=1时的特例。
二项分布使用最广泛的例子就是抛硬币了,假设硬币正面朝上的概率为p,重复扔n次硬币,k次为正面的概率即为一个二项分布概率。
在实验数据较少的情况下,如果我们直接用极大似然估计,二项分布的参数可能会出现过拟合的现象。比如,扔硬币三次都是正面,那么最大似然法预测以后的所有抛硬币结果都是正面。为了避免这种情况的发生,可以考虑引入先验概率分布p(μ)来控制参数μ,防止过拟合现象的发生。那么我们应该如何选择p(μ)?
前面我们提到,先验概率和后验概率的关系为:
二项分布的似然函数为:
如果选择的先验概率p(μ)也是μ与(1−μ)次方乘积的关系,那么后验概率的分布形式与先验将一样,这样先验概率与后验概率就是共轭分布了。
由第三部分,我们知道Beta分布的概率密度函数为:
正好满足我们上面的要求!所以说,Beta分布式二项式分布的共轭先验!
5. Multinomial多项式分布
将二项式分布推广到多项式分布(Multinomial Distribution),二项式分布式n次伯努利实验,规定了每次的实验结果只有两个。现在还是做n次实验,只不过每次实验的结果变成了m个,且m个结果发生的概率互斥且和为1,则发生其中一个结果X次的概率就是多项式分布。
扔骰子是典型的多项式分布。骰子有6个面对应6个不同的点数,这样单次每个点数朝上的概率都是1/6(对应p1~p6,它们的值不一定都是1/6,只要和为1且互斥即可,比如一个形状不规则的骰子),重复扔n次,如果问有k次都是点数6朝上的概率就是:
而多项式分布的一般概率质量函数为:
将试验进行N次,记第i种可能发生的次数为mi,其中
简单推导一下概率质量函数的推导:
k种独立的取值可能,n次实验,每种可能的概率为p1, p2, ..., pk。
则第一种被选中m1次,第二种被选中m2次,第k种被选中mk次的概率为:
展开既可以得到上面的结果。
6. Dirichlet狄利克雷分布
前面我们讲到Beta分布式二项式分布的共轭先验,Dirichlet分布则是多项式分布的共轭先验。
Dirichlet(狄利克雷)同时可以看做是将Beta分布推广到多变量的情形。概率密度函数定义如下:
其中
为Dirichlet分布的参数。且有:
B(α)表示 Dirichlet分布的归一化常数:
类似于Beta函数有以下等式成立:
Dirichlet分布的期望为:
7. Dirichlet分布是Multinomial分布的共轭先验
多项式分布的似然函数为:
我们使用贝叶斯定理推断Dirichlet-MultCount共轭关系。对于参数为α的Dirichlet分布,可以用如下公式表示:
这里,表达式如下:
进行了多项式分布实验后,得到结果n后,后验分布为:
然后后验分布其实是一个新的狄利克雷分布:
参数n与α确定后,后验分布的期望为:
https://blog.csdn.net/bitcarmanlee/article/details/82156281#commentBox
(转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布的更多相关文章
- 二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布
1. 二项分布与beta分布对应 2. 多项分布与狄利克雷分布对应 3. 二项分布是什么?n次bernuli试验服从 二项分布 二项分布是N次重复bernuli试验结果的分布. bernuli实验是什 ...
- The Dirichlet Distribution 狄利克雷分布 (PRML 2.2.1)
The Dirichlet Distribution 狄利克雷分布 (PRML 2.2.1) Dirichlet分布可以看做是分布之上的分布.如何理解这句话,我们可以先举个例子:假设我们有一个骰子,其 ...
- 主题模型(概率潜语义分析PLSA、隐含狄利克雷分布LDA)
一.pLSA模型 1.朴素贝叶斯的分析 (1)可以胜任许多文本分类问题.(2)无法解决语料中一词多义和多词一义的问题--它更像是词法分析,而非语义分析.(3)如果使用词向量作为文档的特征,一词多义和多 ...
- Gamma 函数与exponential power distribution (指数幂分布)
1. Γ(⋅) 函数 Γ(α)=∫∞0tα−1e−tdt 可知以下基本性质: Γ(α+1)=αΓ(α) Γ(1)=1 ⇒ Γ(n+1)=n! Γ(12)=π√ 2. 指数幂分布(exponential ...
- SK-Learn使用NMF(非负矩阵分解)和LDA(隐含狄利克雷分布)进行话题抽取
英文链接:http://scikit-learn.org/stable/auto_examples/applications/topics_extraction_with_nmf_lda.html 这 ...
- gamma函数及相关其分布
神奇的gamma函数(上) 神奇的gamma函数(下) gamma函数的定义及重要性质 \[\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt\] \[\Gamma(x+ ...
- 随机采样和随机模拟:吉布斯采样Gibbs Sampling实现文档分类
http://blog.csdn.net/pipisorry/article/details/51525308 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样进行文档分类(聚类),当然更复杂的实 ...
- 理解 LDA 主题模型
前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 ...
- 通俗理解LDA主题模型
通俗理解LDA主题模型 0 前言 印象中,最開始听说"LDA"这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印 ...
随机推荐
- OPEN GL
https://blog.csdn.net/cdut100/article/details/45753227 https://www.jianshu.com/p/d22cf555de47 https: ...
- linux下tomcat相关的命令
1.查看Tomcat是否以关闭 ps -ef|grep tomcat 2.直接干掉Tomcat可以使用kill命令,直接杀死Tomcat进程(这个命令用在当你关闭tomcat报错的时候直接杀死进程) ...
- 还看不懂同事代码?快来补一波 Java 7 语法特性
前言 Java 平台自出现到目前为止,已经 20 多个年头了,这 20 多年间 Java 也一直作为最流行的程序设计语言之一,不断面临着其他新兴编程语言的挑战与冲击.Java 语言是一种静态强类型语言 ...
- 推荐中的多任务学习-YouTube视频推荐
本文将介绍Google发表在RecSys'19 的论文<Recommending What Video to Watch Next: A Multitask Ranking System> ...
- Spark学习笔记(二)—— Local模式
Spark 的运行模式有 Local(也称单节点模式),Standalone(集群模式),Spark on Yarn(运行在Yarn上),Mesos以及K8s等常用模式,本文介绍第一种模式. 1.Lo ...
- Redis 千万不要乱用KEYS命令,不然会挨打的
Redis现如今使用的场景越来越多?如何批量删除key呢? 有人说用KEYS命令,刚开始学Redis的时候就是用这个命令列出库中键. KEYS命令要谨慎使用. 为何?客观别急,我们先一步步来看. KE ...
- 如何在ArcGIS中恢复MapGIS制图表达信息
1.输出符号信息 Map2Shp软件中提供了图示表达转换功能,提供对MapGIS图形特征可视表达信息的跨平台支持.若要使用该功能,必须在转换时,"图元参数输出方式"选定为[图元参数 ...
- 发布到远程存储库时遇到错误: Git failed with a fatal error.
正在推送 master发布到远程存储库时遇到错误: Git failed with a fatal error.Authentication failed for 'http://1212121xxx ...
- github 关掉邮件通知
- 用PHP写下HELLO WORLD!
一.选择PHP开发工具 1.phpstorm最新版本 2.打开phpstorm界面 按create键,选择new window ,出下如下页面: 鼠标放在文件夹上,右键单击,弹出以下对话框:做如下操作 ...