从2014年Ian Goodfellow提出GANs(Generative adversarial networks)以来,GANs可以说是目前深度学习领域最为热门的研究内容之一,这种可以人工生成数据的方法给我们带来了丰富的想象。有研究者已经能够自动生成相当真实的卧室、专辑封面、人脸等图像,并且在此基础上做了一些有趣的事情。当然那些工作可能会相当困难,下面我们来实现一个简单的例子,建立一个能够生成手写数字的GAN。

GAN architecture

首先回顾一下GAN的结构

Generative adversarial networks包含了两个部分,一个是生成器generator ,一个是判别器discriminator 。discriminator能够评估给定一个图像和真实图像的相似程度,或者说有多大可能性是人工生成的图像。discriminator 实质上相当于一个二分类器,在我们的例子中它是一个CNN。generator能根据随机输入的值来得到一个图像,在我们的例子中的generator是deconvolutional neural network。在整个训练迭代过程中,生成器和判别器网络的weights和biases的值依然会根据误差反向传播理论来训练得到。discriminator需要学习如何分辨real images和generator制造的fake images。同时generator会根据discriminator的反馈结果去学习如何生成更加真实的图像以至于discriminator不能分辨。

Loading MNIST data

首先导入tensorflow等需要用到的函数库,TensorFlow中提取了能够非常方便地导入MNIST数据的read_data_sets函数。

import tensorflow as tf
import numpy as np
import datetime
import matplotlib.pyplot as plt
%matplotlib inline from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/")

MNIST中每个图像的初始格式是一个784维的向量。可以使用reshape还原成28x28的图像。

sample_image = mnist.train.next_batch(1)[0]
print(sample_image.shape) sample_image = sample_image.reshape([28, 28])
plt.imshow(sample_image, cmap='Greys')

Discriminator network

判别器网络实际上和CNN相似,包含两个卷积层和两个全连接层。

def discriminator(images, reuse_variables=None):
with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables) as scope:
# 第一个卷积层
# 使用32个5 x 5卷积模板
d_w1 = tf.get_variable('d_w1', [5, 5, 1, 32], initializer=tf.truncated_normal_initializer(stddev=0.02))
d_b1 = tf.get_variable('d_b1', [32], initializer=tf.constant_initializer(0))
d1 = tf.nn.conv2d(input=images, filter=d_w1, strides=[1, 1, 1, 1], padding='SAME')
d1 = d1 + d_b1
d1 = tf.nn.relu(d1)
d1 = tf.nn.avg_pool(d1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 第二个卷积层
# 使用64个5 x 5卷积模板,每个模板包含32个通道
d_w2 = tf.get_variable('d_w2', [5, 5, 32, 64], initializer=tf.truncated_normal_initializer(stddev=0.02))
d_b2 = tf.get_variable('d_b2', [64], initializer=tf.constant_initializer(0))
d2 = tf.nn.conv2d(input=d1, filter=d_w2, strides=[1, 1, 1, 1], padding='SAME')
d2 = d2 + d_b2
d2 = tf.nn.relu(d2)
d2 = tf.nn.avg_pool(d2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 第一个全连接层
d_w3 = tf.get_variable('d_w3', [7 * 7 * 64, 1024], initializer=tf.truncated_normal_initializer(stddev=0.02))
d_b3 = tf.get_variable('d_b3', [1024], initializer=tf.constant_initializer(0))
d3 = tf.reshape(d2, [-1, 7 * 7 * 64])
d3 = tf.matmul(d3, d_w3)
d3 = d3 + d_b3
d3 = tf.nn.relu(d3) # 第二个全连接层
d_w4 = tf.get_variable('d_w4', [1024, 1], initializer=tf.truncated_normal_initializer(stddev=0.02))
d_b4 = tf.get_variable('d_b4', [1], initializer=tf.constant_initializer(0))
d4 = tf.matmul(d3, d_w4) + d_b4 # 最后输出一个非尺度化的值
return d4

Generator network



生成器根据输入的随机的d维向量,最终输出一个28 x 28图像(实际用784维向量表示)。在生成器的每层将会使用到ReLU激活函数和batch normalization。

batch normalization 可能会有两个好处:更快的训练速度和更高的全局准确率。

def generator(z, batch_size, z_dim):
g_w1 = tf.get_variable('g_w1', [z_dim, 3136], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.02))
g_b1 = tf.get_variable('g_b1', [3136], initializer=tf.truncated_normal_initializer(stddev=0.02))
g1 = tf.matmul(z, g_w1) + g_b1
g1 = tf.reshape(g1, [-1, 56, 56, 1])
g1 = tf.contrib.layers.batch_norm(g1, epsilon=1e-5, scope='bn1')
g1 = tf.nn.relu(g1) g_w2 = tf.get_variable('g_w2', [3, 3, 1, z_dim/2], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.02))
g_b2 = tf.get_variable('g_b2', [z_dim/2], initializer=tf.truncated_normal_initializer(stddev=0.02))
g2 = tf.nn.conv2d(g1, g_w2, strides=[1, 2, 2, 1], padding='SAME')
g2 = g2 + g_b2
g2 = tf.contrib.layers.batch_norm(g2, epsilon=1e-5, scope='bn2')
g2 = tf.nn.relu(g2)
g2 = tf.image.resize_images(g2, [56, 56]) g_w3 = tf.get_variable('g_w3', [3, 3, z_dim/2, z_dim/4], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.02))
g_b3 = tf.get_variable('g_b3', [z_dim/4], initializer=tf.truncated_normal_initializer(stddev=0.02))
g3 = tf.nn.conv2d(g2, g_w3, strides=[1, 2, 2, 1], padding='SAME')
g3 = g3 + g_b3
g3 = tf.contrib.layers.batch_norm(g3, epsilon=1e-5, scope='bn3')
g3 = tf.nn.relu(g3)
g3 = tf.image.resize_images(g3, [56, 56]) g_w4 = tf.get_variable('g_w4', [1, 1, z_dim/4, 1], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.02))
g_b4 = tf.get_variable('g_b4', [1], initializer=tf.truncated_normal_initializer(stddev=0.02))
g4 = tf.nn.conv2d(g3, g_w4, strides=[1, 2, 2, 1], padding='SAME')
g4 = g4 + g_b4
g4 = tf.sigmoid(g4) # 输出g4的维度: batch_size x 28 x 28 x 1
return g4

Training a GAN

# 清除默认图的堆栈,并设置全局图为默认图
tf.reset_default_graph()
batch_size = 50 z_placeholder = tf.placeholder(tf.float32, [None, z_dimensions], name='z_placeholder') x_placeholder = tf.placeholder(tf.float32, shape = [None,28,28,1], name='x_placeholder') Gz = generator(z_placeholder, batch_size, z_dimensions)
Dx = discriminator(x_placeholder)
Dg = discriminator(Gz, reuse_variables=True) #discriminator 的loss 分为两部分
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits = Dx, labels = tf.ones_like(Dx)))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits = Dg, labels = tf.zeros_like(Dg)))
d_loss=d_loss_real + d_loss_fake
# Generator的目标是生成尽可能真实的图像,所以计算Dg和1的loss
g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits = Dg, labels = tf.ones_like(Dg)))

上面计算了loss 函数,接下来需要定义优化器optimizer。generator的optimizer只更新generator的网络权值,训练discriminator的时候需要固定generator的网络权值同时更新discriminator的权值。

tvars = tf.trainable_variables()

#分别保存discriminator和generator的权值
d_vars = [var for var in tvars if 'd_' in var.name]
g_vars = [var for var in tvars if 'g_' in var.name] print([v.name for v in d_vars])
print([v.name for v in g_vars])

Adam是GAN的最好的优化方法,它利用了自适应学习率和学习惯性。调用Adam's minimize function来寻找最小loss,并且通过var_list来指定需要更新的参数。


d_trainer = tf.train.AdamOptimizer(0.0003).minimize(d_loss, var_list=d_vars)
g_trainer = tf.train.AdamOptimizer(0.0001).minimize(g_loss, var_list=g_vars)

使用TensorBoard来观察训练情况,打开terminal输入

tensorboard --logdir=tensorboard/

打开TensorBoard的地址是http://localhost:6006

tf.get_variable_scope().reuse_variables()

tf.summary.scalar('Generator_loss', g_loss)
tf.summary.scalar('Discriminator_loss_real', d_loss_real)
tf.summary.scalar('Discriminator_loss_fake', d_loss_fake) images_for_tensorboard = generator(z_placeholder, batch_size, z_dimensions)
tf.summary.image('Generated_images', images_for_tensorboard, 5)
merged = tf.summary.merge_all()
logdir = "tensorboard/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + "/"
writer = tf.summary.FileWriter(logdir, sess.graph)

下面进行迭代更新参数。对discriminator先进行预训练,这样对generator的训练有好处。

sess = tf.Session()
sess.run(tf.global_variables_initializer()) # 对discriminator的预训练
for i in range(300):
z_batch = np.random.normal(0, 1, size=[batch_size, z_dimensions])
real_image_batch = mnist.train.next_batch(batch_size)[0].reshape([batch_size, 28, 28, 1])
_, __, dLossReal, dLossFake = sess.run([d_trainer_real, d_trainer_fake, d_loss_real, d_loss_fake],
{x_placeholder: real_image_batch, z_placeholder: z_batch}) if(i % 100 == 0):
print("dLossReal:", dLossReal, "dLossFake:", dLossFake) # 交替训练 generator和discriminator
for i in range(100000):
real_image_batch = mnist.train.next_batch(batch_size)[0].reshape([batch_size, 28, 28, 1])
z_batch = np.random.normal(0, 1, size=[batch_size, z_dimensions]) # 用 real and fake images对discriminator训练
_,dLossReal, dLossFake = sess.run([d_trainer,d_loss_real, d_loss_fake],
{x_placeholder: real_image_batch, z_placeholder: z_batch}) # 训练 generator
z_batch = np.random.normal(0, 1, size=[batch_size, z_dimensions])
_ = sess.run(g_trainer, feed_dict={z_placeholder: z_batch}) if i % 10 == 0:
# 更新 TensorBoard 统计
z_batch = np.random.normal(0, 1, size=[batch_size, z_dimensions])
summary = sess.run(merged, {z_placeholder: z_batch, x_placeholder: real_image_batch})
writer.add_summary(summary, i) if i % 100 == 0:
# 每 100 iterations, 输出一个生成的图像
print("Iteration:", i, "at", datetime.datetime.now())
z_batch = np.random.normal(0, 1, size=[1, z_dimensions])
generated_images = generator(z_placeholder, 1, z_dimensions)
images = sess.run(generated_images, {z_placeholder: z_batch})
plt.imshow(images[0].reshape([28, 28]), cmap='Greys')
plt.show()
# 输出discriminator的值
im = images[0].reshape([1, 28, 28, 1])
result = discriminator(x_placeholder)
estimate = sess.run(result, {x_placeholder: im})
print("Estimate:", estimate)

More

众所周知,由于GAN的表达能力非常强,几乎能够刻画任意概率分布,GAN的训练过程是非常困难的(容易跑偏)。如果没有找到合适的超参和网络结构,并且进行合理的训练过程,容易在discriminator和generator中间出现一方压倒另一方的情况。

一种常见失败情况是discriminator压倒generator的时候,对generator生成的每个image,discriminator几乎都能认为是fake image,这时generator几乎找不到下降的梯度。因此对discriminator的输出并没有经过sigmoid 函数(sigmoid function 会将输出推向0或1)。

另一种失败情况是“mode collapse”,指的是generator发现并利用了discriminator某些漏洞。例如generator发现某个图像a能让discriminator判定为真,那么generator可能会学习到:对任意输入的noise vector z,只需要输出和a几乎相同的图像。

研究人员已经指出了一部分对建立更加稳定的GAN有帮助的GAN hacks

Resources

Ian Goodfellow 最近的GAN教程

...

GAN tensorflow 实作的更多相关文章

  1. Generative Adversarial Nets(GAN Tensorflow)

    Generative Adversarial Nets(简称GAN)是一种非常流行的神经网络. 它最初是由Ian Goodfellow等人在NIPS 2014论文中介绍的. 这篇论文引发了很多关于神经 ...

  2. Tensorflow[源码安装时bazel行为解析]

    0. 引言 通过源码方式安装,并进行一定程度的解读,有助于理解tensorflow源码,本文主要基于tensorflow v1.8源码,并借鉴于如何阅读TensorFlow源码. 首先,自然是需要去b ...

  3. TensorFlow.NET机器学习入门【0】前言与目录

    曾经学习过一段时间ML.NET的知识,ML.NET是微软提供的一套机器学习框架,相对于其他的一些机器学习框架,ML.NET侧重于消费现有的网络模型,不太好自定义自己的网络模型,底层实现也做了高度封装. ...

  4. 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上

    GAN网络架构分析 上图即为GAN的逻辑架构,其中的noise vector就是特征向量z,real images就是输入变量x,标签的标准比较简单(二分类么),real的就是tf.ones,fake ...

  5. 『TensorFlow』通过代码理解gan网络_中

    『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 上篇是一个尝试生成minist手写体数据的简单GAN网络,之前有介绍过,图片维度是28*28*1,生成器的上采样使 ...

  6. 利用tensorflow训练简单的生成对抗网络GAN

    对抗网络是14年Goodfellow Ian在论文Generative Adversarial Nets中提出来的. 原理方面,对抗网络可以简单归纳为一个生成器(generator)和一个判断器(di ...

  7. TensorFlow从1到2(十二)生成对抗网络GAN和图片自动生成

    生成对抗网络的概念 上一篇中介绍的VAE自动编码器具备了一定程度的创造特征,能够"无中生有"的由一组随机数向量生成手写字符的图片. 这个"创造能力"我们在模型中 ...

  8. GAN生成式对抗网络(二)——tensorflow代码示例

    代码实现 当初学习时,主要学习的这个博客 https://xyang35.github.io/2017/08/22/GAN-1/ ,写的挺好的. 本文目的,用GAN实现最简单的例子,帮助认识GAN算法 ...

  9. 不要怂,就是GAN (生成式对抗网络) (三):判别器和生成器 TensorFlow Model

    在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 utils.py,输入如下代码: import scipy.misc import numpy as np # 保存 ...

随机推荐

  1. React Native 性能优化指南【全网最全,值得收藏】

    2020 年谈 React Native,在日新月异的前端圈,可能算比较另类了.文章动笔之前我也犹豫过,但是想到写技术文章又不是赶时髦,啥新潮写啥,所以还是动笔写了这篇 React Native 性能 ...

  2. Intellij Idea插件使用记录之Alibaba Java Coding Guidelines

    目录 Intellij Idea插件Alibaba Java Coding Guidelines 前言 使用 感谢 Intellij Idea插件Alibaba Java Coding Guideli ...

  3. 【python小随笔】动态创建变量名

    PS:有时候我们不知道列表组数里存放几个值,但是又要动态的遍历这些值并且动态的创建每一个对应的一个变量里: t = ['B0716PK6R2','B077X9J24C','B01N2SBH4J'] c ...

  4. 从 posix_spawn() 函数窥探漏洞逃逸

    posix_spawn() 函数是用来在Linux上创建子进程的,头文件是 #include <spawn.h> ,语法如下: #include <spawn.h> int p ...

  5. 程序员如何才能跨过高级级别,譬如腾讯T3.1/阿里P7

    首先自我介绍下自己履历:5年前过了腾讯的T3.2,最近又在1年多前过了阿里的P8,目前在B站. **腾讯** 在腾讯我是T2.1社招一般水平入职的,3年后到了T3.2.中间是经历过几个转变:刚来的半年 ...

  6. mysql 行增删改查

    一.增 ); ),(); insert into student(name, age) select name, age from info; 二.删 delete from db1; delete ...

  7. map转URL

    package com.psm.util; import java.util.Map; public class MapSwitchUrl { public static String getUrlP ...

  8. AVR单片机教程——UART进阶

    本文隶属于AVR单片机教程系列.   在第一期中,我们已经开始使用UART来实现单片机开发板与计算机之间的通信,但只是简单地讲了讲一些概念和库函数的使用.在这一篇教程中,我们将从硬件与软件等各方面更深 ...

  9. 用路由系统生成输出URL 在视图中生成输出URL 高级路由特性 精通ASP-NET-MVC-5-弗瑞曼

    Using the Routing System to Generate an Outgoing URL 结果呢:<a href="/Home/CustomVariable" ...

  10. CTRL-IKun团队选题报告

    1. 团队简介 1.1团队名称:CTRL-IKun 1.2队员学号列表 姓名 学号列表 廖志丹 201731032125 王川 201731021132 江天宇 201731024132 张微玖 20 ...