关键字

清理堆栈

参数入栈顺序

函数名称修饰(C)

__cdecl

调用函数

右 à 左

_函数名

__stdcall

被调用函数

右 à 左

_函数名@数字

__fastcall

被调用函数

右 à 左

@函数名@数字

thiscall(非关键字)

被调用函数

右 à 左

/

在C语言中,假设我们有这样的一个函数:

int function(int a,int b)

调用时只要用result = function(1,2)这样的方式就可以使用这个函数。但是,当高级

语言被编译成计算机可以识别的机器码时,有一个问题就凸现出来:在CPU中,计算机没

有办法知道一个函数调用需要多少个、什么样的参数,也没有硬件可以保存这些参数。

也就是说,计算机不知道怎么给这个函数传递参数,传递参数的工作必须由函数调用者

和函数本身来协调。为此,计算机提供了一种被称为栈的数据结构来支持参数传递。

栈是一种先进后出的数据结构,栈有一个存储区、一个栈顶指针。栈顶指针指向堆栈中

第一个可用的数据项(被称为栈顶)。用户可以在栈顶上方向栈中加入数据,这个操作

被称为压栈(Push),压栈以后,栈顶自动变成新加入数据项的位置,栈顶指针也随之修

改。用户也可以从堆栈中取走栈顶,称为弹出栈(pop),弹出栈后,栈顶下的一个元素变

成栈顶,栈顶指针随之修改。

函数调用时,调用者依次把参数压栈,然后调用函数,函数被调用以后,在堆栈中取得

数据,并进行计算。函数计算结束以后,或者调用者、或者函数本身修改堆栈,使堆栈

恢复原装。

在参数传递中,有两个很重要的问题必须得到明确说明:

当参数个数多于一个时,按照什么顺序把参数压入堆栈

函数调用后,由谁来把堆栈恢复原装

在高级语言中,通过函数调用约定来说明这两个问题。常见的调用约定有:

stdcall

cdecl

fastcall

thiscall

naked call

stdcall调用约定

stdcall很多时候被称为pascal调用约定,因为pascal是早期很常见的一种教学用计算机

程序设计语言,其语法严谨,使用的函数调用约定就是stdcall。在Microsoft C++系列

的C/C++编译器中,常常用PASCAL宏来声明这个调用约定,类似的宏还有WINAPI和CALLB

ACK。

stdcall调用约定声明的语法为(以前文的那个函数为例):

int __stdcall function(int a,int b)

stdcall的调用约定意味着:1)参数从右向左压入堆栈,2)函数自身修改堆栈 3)函数

名自动加前导的下划线,后面紧跟一个@符号,其后紧跟着参数的尺寸

以上述这个函数为例,参数b首先被压栈,然后是参数a,函数调用function(1,2)调用处

翻译成汇编语言将变成:

push 2 第二个参数入栈

push 1 第一个参数入栈

call function 调用参数,注意此时自动把cs:eip入栈

而对于函数自身,则可以翻译为:

push ebp 保存ebp寄存器,该寄存器将用来保存堆栈的栈顶指针,可以在函数退出

时恢复

mov ebp,esp 保存堆栈指针

mov eax,[ebp + 8H] 堆栈中ebp指向位置之前依次保存有ebp,cs:eip,a,b,ebp +8指向

a

add eax,[ebp + 0CH] 堆栈中ebp + 12处保存了b

mov esp,ebp 恢复esp

pop ebp

ret 8

而在编译时,这个函数的名字被翻译成_function@8

注意不同编译器会插入自己的汇编代码以提供编译的通用性,但是大体代码如此。其中

在函数开始处保留esp到ebp中,在函数结束恢复是编译器常用的方法。

从函数调用看,2和1依次被push进堆栈,而在函数中又通过相对于ebp(即刚进函数时的

堆栈指针)的偏移量存取参数。函数结束后,ret 8表示清理8个字节的堆栈,函数自己

恢复了堆栈。

cdecl调用约定

cdecl调用约定又称为C调用约定,是C语言缺省的调用约定,它的定义语法是:

int function (int a ,int b) //不加修饰就是C调用约定

int __cdecl function(int a,int b)//明确指出C调用约定

在写本文时,出乎我的意料,发现cdecl调用约定的参数压栈顺序是和stdcall是一样的

,参数首先由有向左压入堆栈。所不同的是,函数本身不清理堆栈,调用者负责清理堆

栈。由于这种变化,C调用约定允许函数的参数的个数是不固定的,这也是C语言的一大

特色。对于前面的function函数,使用cdecl后的汇编码变成:

调用处

push 1

push 2

call function

add esp,8 注意:这里调用者在恢复堆栈

被调用函数_function处

push ebp 保存ebp寄存器,该寄存器将用来保存堆栈的栈顶指针,可以在函数退出

时恢复

mov ebp,esp 保存堆栈指针

mov eax,[ebp + 8H] 堆栈中ebp指向位置之前依次保存有ebp,cs:eip,a,b,ebp +8指向

a

add eax,[ebp + 0CH] 堆栈中ebp + 12处保存了b

mov esp,ebp 恢复esp

pop ebp

ret 注意,这里没有修改堆栈

MSDN中说,该修饰自动在函数名前加前导的下划线,因此函数名在符号表中被记录为_f

unction,但是我在编译时似乎没有看到这种变化。

由于参数按照从右向左顺序压栈,因此最开始的参数在最接近栈顶的位置,因此当采用

不定个数参数时,第一个参数在栈中的位置肯定能知道,只要不定的参数个数能够根据

第一个后者后续的明确的参数确定下来,就可以使用不定参数,例如对于CRT中的sprin

tf函数,定义为:

int sprintf(char* buffer,const char* format,...)

由于所有的不定参数都可以通过format确定,因此使用不定个数的参数是没有问题的。

fastcall

fastcall调用约定和stdcall类似,它意味着:

函数的第一个和第二个DWORD参数(或者尺寸更小的)通过ecx和edx传递,其他参数通过

从右向左的顺序压栈

被调用函数清理堆栈

函数名修改规则同stdcall

其声明语法为:int fastcall function(int a,int b)

thiscall

thiscall是唯一一个不能明确指明的函数修饰,因为thiscall不是关键字。它是C++类成

员函数缺省的调用约定。由于成员函数调用还有一个this指针,因此必须特殊处理,th

iscall意味着:

参数从右向左入栈

如果参数个数确定,this指针通过ecx传递给被调用者;如果参数个数不确定,this指针

在所有参数压栈后被压入堆栈。

对参数个数不定的,调用者清理堆栈,否则函数自己清理堆栈

为了说明这个调用约定,定义如下类和使用代码:

class A

{

public:

int function1(int a,int b);

int function2(int a,...);

};

int A::function1 (int a,int b)

{

return a+b;

}

#include

int A::function2(int a,...)

{

va_list ap;

va_start(ap,a);

int i;

int result = 0;

for(i = 0 i < a i ++)

{

result += va_arg(ap,int);

}

return result;

}

void callee()

{

A a;

a.function1 (1,2);

a.function2(3,1,2,3);

}

callee函数被翻译成汇编后就变成:

//函数function1调用

0401C1D push 2

00401C1F push 1

00401C21 lea ecx,[ebp-8]

00401C24 call function1 注意,这里this没有被入栈

//函数function2调用

00401C29 push 3

00401C2B push 2

00401C2D push 1

00401C2F push 3

00401C31 lea eax,[ebp-8] 这里引入this指针

00401C34 push eax

00401C35 call function2

00401C3A add esp,14h

可见,对于参数个数固定情况下,它类似于stdcall,不定时则类似cdecl

naked call

这是一个很少见的调用约定,一般程序设计者建议不要使用。编译器不会给这种函数增

加初始化和清理代码,更特殊的是,你不能用return返回返回值,只能用插入汇编返回

结果。这一般用于实模式驱动程序设计,假设定义一个求和的加法程序,可以定义为:

__declspec(naked) int add(int a,int b)

{

__asm mov eax,a

__asm add eax,b

__asm ret

}

注意,这个函数没有显式的return返回值,返回通过修改eax寄存器实现,而且连退出函

数的ret指令都必须显式插入。上面代码被翻译成汇编以后变成:

mov eax,[ebp+8]

add eax,[ebp+12]

ret 8

注意这个修饰是和__stdcall及cdecl结合使用的,前面是它和cdecl结合使用的代码,对

于和stdcall结合的代码,则变成:

__declspec(naked) int __stdcall function(int a,int b)

{

__asm mov eax,a

__asm add eax,b

__asm ret 8 //注意后面的8

}

至于这种函数被调用,则和普通的cdecl及stdcall调用函数一致。

函数调用约定导致的常见问题

如果定义的约定和使用的约定不一致,则将导致堆栈被破坏,导致严重问题,下面是两

种常见的问题:

函数原型声明和函数体定义不一致

DLL导入函数时声明了不同的函数约定

以后者为例,假设我们在dll种声明了一种函数为:

__declspec(dllexport) int func(int a,int b);//注意,这里没有stdcall,使用的是

cdecl

使用时代码为:

typedef int (*WINAPI DLLFUNC)func(int a,int b);

hLib = LoadLibrary(...);

DLLFUNC func = (DLLFUNC)GetProcAddress(...)//这里修改了调用约定

result = func(1,2);//导致错误

由于调用者没有理解WINAPI的含义错误的增加了这个修饰,上述代码必然导致堆栈被破

坏,MFC在编译时插入的checkesp函数将告诉你,堆栈被破坏了。

函数调用堆栈分析 

理解调用栈最重要的两点是:栈的结构,EBP寄存器的作用。

首先要认识到这样两个事实:

1、一个函数调用动作可分解为:零到多个PUSH指令(用于参数入栈),一个CALL指令。CALL指令内部其实还暗含了一个将返回地址(即CALL指令下一条指令的地址)压栈的动作。

2、几乎所有本地编译器都会在每个函数体之前插入类似如下指令:PUSH EBP; MOV EBP ESP;

即,在程序执行到一个函数的真正函数体时,已经有以下数据顺序入栈:参数,返回地址,EBP。

由此得到类似如下的栈结构(参数入栈顺序跟调用方式有关,这里以C语言默认的CDECL为例):

+| (栈底方向,高位地址) |

 | .................... |

 | .................... |

 | 参数3                |

 | 参数2                |

 | 参数1                |

 | 返回地址             |

-| 上一层[EBP]          | <-------- [EBP]

“PUSH EBP”“MOV EBP ESP”这两条指令实在大有深意:首先将EBP入栈,然后将栈顶指针ESP赋值给EBP。“MOV EBP ESP”这条指令表面上看是用ESP把EBP原来的值覆盖了,其实不然——因为给EBP赋值之前,原EBP值已经被压栈(位于栈顶),而新的EBP又恰恰指向栈顶。

此时EBP寄存器就已经处于一个非常重要的地位,该寄存器中存储着栈中的一个地址(原EBP入栈后的栈顶),从该地址为基准,向上(栈底方向)能获取返回地址、参数值,向下(栈顶方向)能获取函数局部变量值,而该地址处又存储着上一层函数调用时的EBP值!

一般而言,ss:[ebp+4]处为返回地址,ss:[ebp+8]处为第一个参数值(最后一个入栈的参数值,此处假设其占用4字节内存),ss:[ebp-4]处为第一个局部变量,ss:[ebp]处为上一层EBP值。

由于EBP中的地址处总是“上一层函数调用时的EBP值”,而在每一层函数调用中,都能通过当时的EBP值“向上(栈底方向)能获取返回地址、参数值,向下(栈顶方向)能获取函数局部变量值”。

如此形成递归,直至到达栈底。这就是函数调用栈。

编译器对EBP的使用实在太精妙了。

从当前EBP出发,逐层向上找到所有的EBP是非常容易的:

unsigned int _ebp;

__asm _ebp, ebp;

while (not stack bottom)

{

    //...

    _ebp = *(unsigned int*)_ebp;

}

函数调用约定_stdcall[转]的更多相关文章

  1. __cdecl __stdcall __fastcall之函数调用约定讲解

    首先讲解一下栈帧的概念: 从逻辑上讲,栈帧就是一个函数执行的环境:函数参数.函数的局部变量.函数执行完后返回到哪里等等. 实现上有硬件方式和软件方式(有些体系不支持硬件栈) 首先应该明白,栈是从高地址 ...

  2. 【黑客免杀攻防】读书笔记7 - 软件逆向工程基础1(函数调用约定、Main函数查找)

    0x1 准备工作 1.1.准备工具 IDA:交互式反汇编工具 OllyDbg:用户层调试工具 Visual Studio:微软开发工具 1.2.基础知识 C++开发 汇编语言 0x2 查找真正的mai ...

  3. c++中的几种函数调用约定(转)

    C++中的函数调用约定(调用惯例)主要针对三个问题: 1.参数传递的方式(是否采用寄存器传递参数.采用哪个寄存器传递参数.参数压桟的顺序等): 参数的传递方式,最常见的是通过栈传递.函数的调用方将参数 ...

  4. C语言函数调用约定

    在C语言中,假设我们有这样的一个函数: int function(int a,int b) 调用时只要用result = function(1,2)这样的方式就可以使用这个函数.但是,当高级语言被编译 ...

  5. Windows x64汇编函数调用约定

    最近在写一些字符串函数的优化,用到x64汇编,我也是第一次接触,故跟大家分享一下. x86:又名 x32 ,表示 Intel x86 架构,即 Intel 的32位 80386 汇编指令集. x64: ...

  6. 汇编  cdecl 函数调用约定,stdcall 函数调用约定

    知识点:  cdecl 函数调用约定  stdcall 函数调用约定  CALL堆栈平衡 配置属性--> c/c++ -->高级-->调用约定 一.cdecl调用约定 VC++ ...

  7. Microsoft函数调用约定

    Microsoft函数调用约定 对于所有调用共有的约定:ebx.ebp.esi.edi都是calle-save,即由被调用的函数负责它们的保存(如果被调用函数用到了这些寄存器的话) 先看函数调用发生了 ...

  8. 关于函数调用约定-thiscall调用约定

    函数调用约定描述了如何以正确的方式调用某些特定类型的函数.包括了函数参数在栈上的分配顺序.有哪些参数将通过寄存器传入,以及在函数返回时函数栈的回收方式等. 函数调用约定的几种类型 stdcall,cd ...

  9. C/C++函数调用约定与this指针

    关于 C/C++ 函数调用约定,大多数时候并不会影响程序逻辑,但遇到跨语言编程时,了解一下还是有好处的. VC 中默认调用是 __cdecl 方式,Windows API 使用 __stdcall 调 ...

随机推荐

  1. 编辑软件->"Notepad++"

    编辑软件->"Notepad++" Notepad++是什么? Notepad++功能比 Windows 中的Notepad(记事本)强大,除了可以用来制作一般的纯文字说明文 ...

  2. Python3-Selenium自动化测试框架(二)之selenium使用和元素定位

    Selenium自动化测试框架(二)之selenium使用和元素定位 (一)selenium的简单使用 1.导包 from selenium import webdriver 2.初始化浏览器 # 驱 ...

  3. 注解@ConfigurationProperties使用方法

    注解@ConfigurationProperties使用方法 前言 最近在思考使用java config的方式进行配置,java config是指基于java配置的spring.传统的Spring一般 ...

  4. Android/Unity大乱斗-完整双方集成交互指南

    这是一个很长很长的story!-芝麻粒儿创作 开篇 源码地址:GitHub 本文目的,将Unity集成到Android端,学完本文后你可以做到 Android任意布局加载Unity 3D场景 任意操作 ...

  5. java数据库学习路线和必学知识点!

    java数据库必学知识点! 分享一下数据库的学习路线和必学的知识点! 掌握mysql,Oracle在各个平台上的安装及使用 Mysql数据库基础 mysql概述.优点.运行原理及内存结构 mysql数 ...

  6. Spring 框架学习(1)--Spring、Spring MVC扫盲

    纸上得来终觉浅,绝知此事要躬行 文章大纲 什么是spring 传统Java web应用架构 更强的Java Web应用架构--MVC框架 Spring--粘合式框架 spring的内涵 spring核 ...

  7. JMeter——分布式压测

    一.Jmeter4.0分布式压测准备工作 压测注意事项            the firewalls on the systems are turned off or correct ports ...

  8. MySQL 行列相互转换

    行列相互转换 /*创建表*/ CREATE TABLE ic ( NAME ), Product ), amount INT ); INSERT INTO ic VALUES (), (), (), ...

  9. Activiti邮件任务

    Activiti邮件任务 作者:Jesai 会不会有那么一天,你会妒忌 Activiti有一种任务叫做邮件任务,顾名思义,就是流程办理到邮件任务的时候,系统就会自动的给你发送任务. Activiti所 ...

  10. Java入门 - 语言基础 - 16.数组

    原文地址:http://www.work100.net/training/java-array.html 更多教程:光束云 - 免费课程 数组 序号 文内章节 视频 1 概述 2 声明数组变量 3 创 ...