树上对抗搜索 - 树形dp
The city they are visiting has n spots and the spots are connected
by directed edges. The spots are connected in such a way that they form
a tree and the root will always be at spot 0. They take turns to select
which edge to go. Both of them choose optimally. Bob will go first.
first line has three integers, n, L and R (1<=n<=500000, 0<=L,
R<=1000000000). The next n-1 lines each has three integers a, b and
c, indicating that there is an edge going from spot a to spot b with
length c (1<=c<=1000). The spots are labeled from 0 to n-1.
There is a blank line after each test case.
Proceed to the end of file.
OutputIf the total distance is not within the range [L, R], print
"Oh, my god!" on a single line. Otherwise, print the most value Bob can
get.Sample Input
3 2 4
0 1 1
0 2 5 7 2 8
0 1 1
0 2 1
1 3 1
1 4 10
2 5 1
2 6 5 7 4 8
0 1 1
0 2 1
1 3 1
1 4 2
2 5 1
2 6 5 4 2 6
0 1 1
1 2 1
1 3 5
Sample Output
Oh, my god!
2
6
2
题意 :给你一棵树,以及树上的边权,两人轮流取走,先走的总是希望总路程最大,后走的人则希望总路程最小,但要求总的范围在(l, r)
思路分析:
思路比较好想,类似数字三角形,只不过这是在树上,从叶子向上去递推,明确在每层是谁去走,去怎么更新当前的结点,但是我的代码超时了...
待更新
代码示例:
const int maxn = 5e5+5; void in(int &a)
{
char c;
while ((c = getchar()) == ' ' || c == '\n');
a = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
a = (a << 3) + (a << 1) + c - 48;
}
int n, l, r;
struct node
{
int to, cost; node(int _to=0, int _cost=0):to(_to), cost(_cost){}
};
vector<node>ve[maxn];
int dis[maxn];
int dp[maxn]; void dfs(int x, int fa, int pt){
if (dis[x] > r) {dp[x]=-1; return;}
if (ve[x].size() == 1) dp[x] = 0;
else dp[x] = pt?-1:inf; for(int i = 0; i < ve[x].size(); i++){
int to = ve[x][i].to;
int cost = ve[x][i].cost;
if (to == fa) continue;
dis[to] = dis[x]+cost; dfs(to, x, !pt);
if (dp[to] == -1 || dp[to] == inf) continue;
if (dp[to]+dis[x]+cost >= l && dp[to]+dis[x]+cost <= r){
if (pt == 1) dp[x] = max(dp[x], dp[to]+cost);
else dp[x] = min(dp[x], dp[to]+cost);
}
}
//printf("++++ x = %d ,pt = %d , dis = %d, %d\n", x, pt, dis[x], dp[x]);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
int a, b, c; while(~scanf("%d%d%d", &n, &l, &r)){
for(int i = 0; i <= n; i++) ve[i].clear();
for(int i = 1; i < n; i++){
in(a), in(b), in(c);
ve[a].push_back(node(b, c));
ve[b].push_back(node(a, c));
}
//memset(dis, 0, sizeof(dis));
//memset(dp, 0, sizeof(dp));
dfs(0, -1, 1);
//printf("+++ %d \n", dp[0]);
if (dp[0] >= l && dp[0] <= r) printf("%d\n", dp[0]);
else printf("Oh, my god!\n");
}
return 0;
}
徐州一道网络赛题
In a world where ordinary people cannot reach, a boy named "Koutarou" and a girl named "Sena" are playing a video game. The game system of this video game is quite unique: in the process of playing this game, you need to constantly face the choice, each time you choose the game will provide 1−31-31−3 options, the player can only choose one of them. Each option has an effect on a "score" parameter in the game. Some options will increase the score, some options will reduce the score, and some options will change the score to a value multiplied by −1-1−1 .
That is, if there are three options in a selection, the score will be increased by 111, decreased by 111, or multiplied by −1-1−1. The score before the selection is 888. Then selecting option 111 will make the score become 999, and selecting option 222 will make the score 777 and select option 333 to make the score −8-8−8. Note that the score has an upper limit of 100100100 and a lower limit of −100-100−100. If the score is 999999 at this time, an option that makes the score +2+2+2 is selected. After that, the score will change to 100100100 and vice versa .
After all the choices have been made, the score will affect the ending of the game. If the score is greater than or equal to a certain value kkk, it will enter a good ending; if it is less than or equal to a certain value lll, it will enter the bad ending; if both conditions are not satisfied, it will enter the normal ending. Now, Koutarou and Sena want to play the good endings and the bad endings respectively. They refused to give up each other and finally decided to use the "one person to make a choice" way to play the game, Koutarou first choose. Now assume that they all know the initial score, the impact of each option, and the kkk, lll values, and decide to choose in the way that works best for them. (That is, they will try their best to play the ending they want. If it's impossible, they would rather normal ending than the ending their rival wants.)
Koutarou and Sena are playing very happy, but I believe you have seen through the final ending. Now give you the initial score, the kkk value, the lll value, and the effect of each option on the score. Can you answer the final ending of the game?
Input
The first line contains four integers n,m,k,ln,m,k,ln,m,k,l(1≤n≤10001\le n \le 10001≤n≤1000, −100≤m≤100-100 \le m \le 100−100≤m≤100 , −100≤l<k≤100-100 \le l < k \le 100−100≤l<k≤100 ), represents the number of choices, the initial score, the minimum score required to enter a good ending, and the highest score required to enter a bad ending, respectively.
Each of the next nnn lines contains three integers a,b,ca,b,ca,b,c(a≥0a\ge 0a≥0 , b≥0b\ge0b≥0 ,c=0c=0c=0 or c=1c=1c=1),indicates the options that appear in this selection,in which a=0a=0a=0 means there is no option to increase the score in this selection, a>0a>0a>0 means there is an option in this selection to increase the score by aaa ; b=0b=0b=0 means there is no option to decrease the score in this selection, b>0b>0b>0 means there is an option in this selection to decrease the score by bbb; c=0c=0c=0 means there is no option to multiply the score by −1-1−1 in this selection , c=1c=1c=1 means there is exactly an option in this selection to multiply the score by −1-1−1. It is guaranteed that a,b,ca,b,ca,b,c are not equal to 000 at the same time.
Output
One line contains the final ending of the game. If it will enter a good ending,print "Good Ending"
(without quotes); if it will enter a bad ending,print "Bad Ending"
(without quotes);otherwise print "Normal Ending"
(without quotes).
样例输入1
3 -8 5 -5
3 1 1
2 0 1
0 2 1
样例输出1
Good Ending
样例输入2
3 0 10 3
0 0 1
0 10 1
0 2 1
样例输出2
Bad Ending 题意 : 给你 n 组操作,一个初始分数 m , 以及一个区间,最终分数大于区间右端点输出 good ,小于区间左端点输出 bad ,否则输出 normal , 其实就是两个人在做游戏,每个人每次有三种操作可选,+a , -b, *-1 ,
先走的人希望最后的分数最大,后走的人希望最后的分数越小,问你最终的情况?
思路分析 : 其实和上面的题目很类似,就是两个人轮流操作,对抗博弈,倒着推一遍就可以了,因为分数有负的,我们可以给其均加上 100 即可
定义 dp[i][j] 表示到第 i 行时,当前分数为 j 的最优解,
if (i&1) dp[i][j] = max(dp[i][j], dp[i+1][j+cost]);
else dp[i][j] = min(dp[i][j], dp[i+1][j+cost]);
代码示例 :
int n, m, k, l;
int arr[1005][3];
int dp[1005][205]; int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout); scanf("%d%d%d%d", &n, &m, &k, &l);
for(int i = 1; i <= n; i++) scanf("%d%d%d", &arr[i][0], &arr[i][1], &arr[i][2]); for(int i = -100; i <= 200; i++) dp[n+1][i+100] = i;
for(int i = n; i >= 1; i--){
if (i&1) {
for(int j = -100; j <= 100; j++){
dp[i][j+100] = -100;
if (arr[i][0]) dp[i][j+100] = max(dp[i][j+100], dp[i+1][min(200, j+arr[i][0]+100)]);
if (arr[i][1]) dp[i][j+100] = max(dp[i][j+100], dp[i+1][max(0, j-arr[i][1]+100)]);
if (arr[i][2]) dp[i][j+100] = max(dp[i][j+100], dp[i+1][-j+100]);
}
}
else {
for(int j = -100; j <= 100; j++){
dp[i][j+100] = 100;
if (arr[i][0]) dp[i][j+100] = min(dp[i][j+100], dp[i+1][min(200, j+arr[i][0]+100)]);
if (arr[i][1]) dp[i][j+100] = min(dp[i][j+100], dp[i+1][max(0, j-arr[i][1]+100)]);
if (arr[i][2]) dp[i][j+100] = min(dp[i][j+100], dp[i+1][-j+100]);
}
}
}
if (dp[1][min(200, m+100)] >= k) printf("Good Ending\n");
else if (dp[1][min(200, m+100)] <= l) printf("Bad Ending\n");
else printf("Normal Ending\n");
return 0;
}
树上对抗搜索 - 树形dp的更多相关文章
- BZOJ_4033_[HAOI2015]树上染色_树形DP
BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...
- 2021.07.17 P3177 树上染色(树形DP)
2021.07.17 P3177 树上染色(树形DP) [P3177 HAOI2015]树上染色 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.dp思想是需要什么,维护 ...
- 树上的等差数列 [树形dp]
树上的等差数列 题目描述 给定一棵包含 \(N\) 个节点的无根树,节点编号 \(1\to N\) .其中每个节点都具有一个权值,第 \(i\) 个节点的权值是 \(A_i\) . 小 \(Hi\) ...
- 【BZOJ4033】[HAOI2015] 树上染色(树形DP)
点此看题面 大致题意: 给你一棵点数为N的带权树,要你在这棵树中选择K个点染成黑色,并将其他的N-K个点染成白色.要求你求出黑点两两之间的距离加上白点两两之间距离的和的最大值. 树形\(DP\) 这道 ...
- 洛谷P3177 [HAOI2015]树上染色(树形dp)
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- Codeforces 919 行+列前缀和 树上记忆化搜索(树形DP)
A B C #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- bzoj 4033: [HAOI2015]树上染色【树形dp】
准确的说应该叫树上分组背包?并不知道我写的这个叫啥 设计状态f[u][j]为在以点u为根的子树中有j个黑点,转移的时候另开一个数组,不能在原数组更新(因为会用到没更新时候的状态),方程式为g[j+k] ...
- BZOJ 4033[HAOI2015] 树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3188 Solved: 1366[Submit][Stat ...
随机推荐
- P1096 4个数的全排列
题目描述 输入4个有序的个位数.按照字典序输出它们的全排列. 输入格式 输入四个数字a,b,c,d.(0<=a,b,c,d<10) 输出格式 输出它们的全排列.每个排列占一行.而且每个排列 ...
- CF1063D Candies for Children
CF1063D Candies for Children 分类讨论题 n<=1e11, 整体上先分n<=2e6与否讨论 len长度,ans贪心的人,p就是len这一段贪心的人 n<= ...
- POJ 2778 DNA Sequence (ac自动机+矩阵快速幂)
DNA Sequence Description It's well known that DNA Sequence is a sequence only contains A, C, T and G ...
- 一个基于 Slab 缓存的 scull: scullc
是时候给个例子了. scullc 是一个简化的 scull 模块的版本, 它只实现空设备 -- 永久 的内存区. 不象 scull, 它使用 kmalloc, scullc 使用内存缓存. 量子的大小 ...
- 消息驱动Bean
消息驱动bean是专门用来处理基于消息请求的组件.MDB负责处理消息,而EJB容器则负责处理服务(事务,安全,并发,消息确认等),使Bean的开发者集中精力在处理消息的业务逻辑上. 消息驱动Bean. ...
- 基于Nutch+Hadoop+Hbase+ElasticSearch的网络爬虫及搜索引擎
基于Nutch+Hadoop+Hbase+ElasticSearch的网络爬虫及搜索引擎 网络爬虫架构在Nutch+Hadoop之上,是一个典型的分布式离线批量处理架构,有非常优异的吞吐量和抓取性能并 ...
- Android4_学会使用Log打印
一.Log介绍: Android中的日志工具类是Log(android.util.Log),这个类中提供了如下5个方法来供我们打印日志. Log.v() .用于打印那些最为琐碎的.意义最小的日志信息. ...
- 换根DP(二次扫描)
参考来自这里: https://blog.csdn.net/qq_41286356/article/details/94554729 题目在这里 https://ac.nowcoder.com/acm ...
- k8s集群---apiserver,controller-manager,scheduler部署
#证书自签名脚本 root@k8s-master: ~/k8s/k8s-cert :: $ cat k8s-cert.sh cat > ca-config.json <<EOF { ...
- 《美国纽约摄影学院摄影教材》PDF教材
下载地址: 美国纽约摄影学院摄影教材(上册).pdf 美国纽约摄影学院摄影教材(下册).pdf 欢迎你到纽约摄影学院来,我们急切地等待着开课,你们也在 跃跃欲试了.那就让我们马上开始吧! 你已 ...