吴裕雄 PYTHON 神经网络——TENSORFLOW 双隐藏层自编码器设计处理MNIST手写数字数据集并使用TENSORBORD描绘神经网络数据2
import os
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data os.environ['TF_CPP_MIN_LOG_LEVEL'] = '' batch_size = 128 # batch容量
display_step = 1 # 展示间隔
learning_rate = 0.01 # 学习率
training_epochs = 20 # 训练轮数,1轮等于n_samples/batch_size
example_to_show = 10 # 展示图像数目 n_hidden1_units = 256 # 第一隐藏层
n_hidden2_units = 128 # 第二隐藏层
n_input_units = 784
n_output_units = n_input_units def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.histogram('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev) # 注意,这是标量
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
def WeightsVariable(n_in,n_out,name_str):
return tf.Variable(tf.random_normal([n_in,n_out]),dtype=tf.float32,name=name_str) def biasesVariable(n_out,name_str):
return tf.Variable(tf.random_normal([n_out]),dtype=tf.float32,name=name_str) def encoder(x_origin,activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_input_units,n_hidden1_units,'Weights')
biases = biasesVariable(n_hidden1_units,'biases')
x_code1 = activate_func(tf.add(tf.matmul(x_origin,Weights),biases))
variable_summaries(Weights)
variable_summaries(biases)
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units,n_hidden2_units,'Weights')
biases = biasesVariable(n_hidden2_units,'biases')
x_code2 = activate_func(tf.add(tf.matmul(x_code1,Weights),biases))
variable_summaries(Weights)
variable_summaries(biases)
return x_code2 def decode(x_code,activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer1'):
Weights = WeightsVariable(n_hidden2_units,n_hidden1_units,'Weights')
biases = biasesVariable(n_hidden1_units,'biases')
x_decode1 = activate_func(tf.add(tf.matmul(x_code,Weights),biases))
variable_summaries(Weights)
variable_summaries(biases)
with tf.name_scope('Layer2'):
Weights = WeightsVariable(n_hidden1_units,n_output_units,'Weights')
biases = biasesVariable(n_output_units,'biases')
x_decode2 = activate_func(tf.add(tf.matmul(x_decode1,Weights),biases))
variable_summaries(Weights)
variable_summaries(biases)
return x_decode2 with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32,[None,n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode,2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss)
# 标量汇总
with tf.name_scope('LossSummary'):
tf.summary.scalar('loss',loss)
tf.summary.scalar('learning_rate',learning_rate)
# 图像展示
with tf.name_scope('ImageSummary'):
image_original = tf.reshape(X_input,[-1, 28, 28, 1])
image_reconstruction = tf.reshape(X_decode, [-1, 28, 28, 1])
tf.summary.image('image_original', image_original, 9)
tf.summary.image('image_recinstruction', image_reconstruction, 9)
# 汇总
merged_summary = tf.summary.merge_all() init = tf.global_variables_initializer() writer = tf.summary.FileWriter(logdir='E:\\tensorboard\\logsssxx', graph=tf.get_default_graph())
writer.flush() mnist = input_data.read_data_sets('E:\\MNIST_data\\', one_hot=True) with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples / batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
_,Loss = sess.run([train,loss],feed_dict={X_input: batch_xs})
Loss = sess.run(loss,feed_dict={X_input: batch_xs})
if epoch % display_step == 0:
print('Epoch: %04d' % (epoch + 1),'loss= ','{:.9f}'.format(Loss))
summary_str = sess.run(merged_summary,feed_dict={X_input: batch_xs})
writer.add_summary(summary_str,epoch)
writer.flush()
writer.close()
print('训练完毕!')
吴裕雄 PYTHON 神经网络——TENSORFLOW 双隐藏层自编码器设计处理MNIST手写数字数据集并使用TENSORBORD描绘神经网络数据2的更多相关文章
- 吴裕雄 PYTHON 神经网络——TENSORFLOW 单隐藏层自编码器设计处理MNIST手写数字数据集并使用TensorBord描绘神经网络数据
import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow ...
- 『TensorFlow』单&双隐藏层自编码器设计
计算图设计 很简单的实践, 多了个隐藏层 没有上节的高斯噪声 网络写法由上节的面向对象改为了函数式编程, 其他没有特别需要注意的,实现如下: import numpy as np import mat ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- TensorFlow——MNIST手写数字识别
MNIST手写数字识别 MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/ 一.数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集 ...
- Tensorflow实现MNIST手写数字识别
之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神 ...
- mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识
用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如 ...
- Tensorflow可视化MNIST手写数字训练
简述] 我们在学习编程语言时,往往第一个程序就是打印“Hello World”,那么对于人工智能学习系统平台来说,他的“Hello World”小程序就是MNIST手写数字训练了.MNIST是一个手写 ...
随机推荐
- 使用pip install mysqlclient命令安装mysqlclient失败?(基于Python)
我们使用Django.flask等来操作MySQL,实际上底层还是通过Python来操作的.因此我们想要用Django来操作MySQL,首先还是需要安装一个驱动程序.在Python3中,驱动程序有多种 ...
- C++-随机数的产生
一.随机数 以前学C语言的时候感觉随机数没啥用的,现在想想是自己无知啦,在帮人做一个项目的时候发现随机数还是相当有用的,我们可以利用随机数来生成大量的测试数据. 有两种方法可以让你的程序每次运行结果不 ...
- 剑指offer 面试题43. 1~n整数中1出现的次数
leetcode上也见过一样的题,当时不会做 看了一下解法是纯数学解法就没看,结果剑指offer上也出现了这道题,那还是认真看下吧 对于数字abcde,如果第一位是1,比如12345,即计算f(123 ...
- ubuntu---yolo报错darknet: ./src/cuda.c:36: check_error: Assertion `0' failed.
装好darknet后,直接测试的时候,报错: darknet: ./src/cuda.c:36: check_error: Assertion `0' failed.解决办法是打开yolov3.cfg ...
- Jenkins - 基于 Docker 的 Jenkins 安装
概述 安装 Jenkins 基于 Docker 这个有点 水一发 的性质... 场景 学习 Jenkins 第一步, 当然是安装 但是 安装的方法 很多 Jenkins 是基于 Java 的 所以是个 ...
- java测试框架详细说明-mvn+testng+allure
java测试框架 mvn+testng+allure 1.mvn代码目录结构 2.testng框架 2.1 testng.xml配置 2.2 注解 3.allure插件,方便报告阅览 4.配置文件.p ...
- 每天进步一点点------Allegro 铺铜详解
铺铜在设计PCB板时很重要,为了加深理解,笔者写下这篇学习的过程. 首先要理解什么是正片和负片,结合网上的资料来理解一下: 正片实际就是能在底片上能看到的就是存在的 负片实际上就是在底片看到的就是不存 ...
- 【vue store的使用方法】(this.$store.state this.$store.getters this.$store.dispatch this.$store.commit)
vue 页面文件 <template> <div> {{this.$store.state.count}}<br/> {{count}}<br/> {{ ...
- Unity Coroutine详解(一)
Unity 中协程是个非常强大的功能,其作用主要是用于游戏中的延时调用或者执行一连串的有时间间隔的事件流程,例如剧情对话等.简单总结了几点协程相关的知识点,旨在加深记忆,同时为初学者解惑. 1.协程. ...
- SSM项目 以及 springboot 中引入swagger2的方法
swagger2是一个非常好用的接口文档,在开发的过程中方便前后端接口的交接. 下面我们就来讲讲在使用java时,分别在SSM框架,以及springboot+mybatis框架中引入swagger2的 ...