Write a program to test if a give sequence Seq is a topological order of a given graph Graph.

Format of functions:

bool IsTopSeq( LGraph Graph, Vertex Seq[] );

where LGraph is defined as the following:

typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV;
PtrToAdjVNode Next;
}; typedef struct Vnode{
PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum]; typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph;

The function IsTopSeq must return true if Seq does correspond to a topological order; otherwise return false.

Note: Although the vertices are numbered from 1 to MaxVertexNum, they are indexed from 0 in the LGraph structure.

Sample program of judge:

#include <stdio.h>
#include <stdlib.h> typedef enum {false, true} bool;
#define MaxVertexNum 10 /* maximum number of vertices */
typedef int Vertex; /* vertices are numbered from 1 to MaxVertexNum */ typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV;
PtrToAdjVNode Next;
}; typedef struct Vnode{
PtrToAdjVNode FirstEdge;
} AdjList[MaxVertexNum]; typedef struct GNode *PtrToGNode;
struct GNode{
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph; LGraph ReadG(); /* details omitted */ bool IsTopSeq( LGraph Graph, Vertex Seq[] ); int main()
{
int i, j, N;
Vertex Seq[MaxVertexNum];
LGraph G = ReadG();
scanf("%d", &N);
for (i=; i<N; i++) {
for (j=; j<G->Nv; j++)
scanf("%d", &Seq[j]);
if ( IsTopSeq(G, Seq)==true ) printf("yes\n");
else printf("no\n");
} return ;
} /* Your function will be put here */

Sample Input (for the graph shown in the figure):


Sample Output:

yes
yes
yes
no
no

题目的大致意思就是,给你一组数据,根据这组数据构建一个有向图,再给你几组序列,判断是不是拓扑序列。

思路:先确定每个结点的入度数,按拓扑顺序输出结点时,每输出一个结点,将其子结点的入度数 -1.

注意:输入的顶点是从 0 开始存放的,也就是

0 1 2 3 4
G1 G2 G3 G4 G5
struct AdjVNode{
Vertex AdjV;
PtrToAdjVNode Next;
};
中的 AdjV,也是从 0 开始存放。

代码

bool IsTopSeq( LGraph Graph, Vertex Seq[] ){
int inDegree[];
for(int i=;i<=Graph->Nv;i++)
inDegree[i]=;
PtrToAdjVNode temnode;
for(int i=;i<Graph->Nv;i++){
temnode=Graph->G[i].FirstEdge;
while (temnode){
inDegree[temnode->AdjV]++;
temnode=temnode->Next;
}
}
for(int i=;i<Graph->Nv;i++){
if(inDegree[Seq[i]-]!=)
return false;
else{
temnode=Graph->G[Seq[i]-].FirstEdge;
while(temnode){
inDegree[temnode->AdjV]--;
temnode=temnode->Next;
}
}
}
return true;
}

PTA Is Topological Order的更多相关文章

  1. A1146. Topological Order

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  2. PAT A1146 Topological Order (25 分)——拓扑排序,入度

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  3. PAT 甲级 1146 Topological Order

    https://pintia.cn/problem-sets/994805342720868352/problems/994805343043829760 This is a problem give ...

  4. PAT 1146 Topological Order[难]

    1146 Topological Order (25 分) This is a problem given in the Graduate Entrance Exam in 2018: Which o ...

  5. [PAT] 1146 Topological Order(25 分)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  6. PAT 1146 Topological Order

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  7. PAT_A1146#Topological Order

    Source: PAT A1146 Topological Order (25 分) Description: This is a problem given in the Graduate Entr ...

  8. PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)

    1146 Topological Order (25 分)   This is a problem given in the Graduate Entrance Exam in 2018: Which ...

  9. 1146. Topological Order (25)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

随机推荐

  1. 毕业论文系列之基于WiFi的智能农业大棚管控系统设计代码

    #include <dht11.h>//dht11库 #include <MsTimer2.h>               //定时器库的 头文件 #include < ...

  2. Linux下静态ip的配置

    ------------恢复内容开始------------ TYPE=Ethernet BOOTPROTO=static#dhcp改为static,采用静态方式 DEFROUTE=yes IPV4_ ...

  3. 牛客练习赛34 D little w and Exchange(归纳)

    题意: 给n个数,和m 问这组数是否可以构成[1, m]中的每一个数 思路: 先将a数组排序. 先算算构成前几个数需要什么,至少需要a[1]=1 需要a[2] = 1,2 在a[2] = 1的情况下a ...

  4. C++中STL库函数的基本运用

    学了这么长时间的STL库,现在我觉得是有必要对过去的题目和所遇到的问题做一下整理了,以便于之后更好的展开练习: 一. 为什么要用STL库? 1.简单粗暴(省事). 2.便于解决复杂的问题(在贪心题目中 ...

  5. linux入门系列12--磁盘管理之分区、格式化与挂载

    前面系列文章讲解了VI编辑器.常用命令.防火墙及网络服务管理,本篇将讲解磁盘管理相关知识. 本文将会介绍大量的Linux命令,其中有一部分在"linux入门系列5--新手必会的linux命令 ...

  6. Multicast

    Source Specific Multicast (SSM) The multicast that you are probably familiar with (PIM sparse and de ...

  7. windows设置开机自启动的地方

    2013-03-24 11:06 (分类:网络安全) 精心总结,这些都是可以放小木马的好地方,留意了 1.最简单的 开始→程序→启动它的位置 C:\Documents and Settings\*** ...

  8. Magicodes.IE基础教程之导出Pdf

    原文作者:hueifeng 说明 本教程主要说明如何使用Magicodes.IE.Pdf完成Pdf收据导出 要点 导出PDF数据 自定义PDF模板 导出单据 如何批量导出单据 导出特性说明 PdfEx ...

  9. .net代码实现上千次ping的实现

    先上代码: 多线程实现ping校验: public void PingCameraNew(List<CameraMongoDto> assetlist) { ThreadPool.SetM ...

  10. PG数据库常用操作

    全量迁移 备份数据 $ pg_dump -h 172.19.235.145 -U <username> -d <database> > 20180704_dbpe.sql ...