[JZOJ4330] 【清华集训模拟】几何题
题目
题目大意
也懒得解释题目大意了……
正解
正解居然是\(FFT\)?
不要看题目的那个式子这么长,也不要在那个式子上下手。
其实我们会发现,不同的\((x_i-x_j,y_i-y_j,z_i-z_j)\)并不多。
如果我们求出每个三元组的出现次数,后面的就好做了。
那怎么求呢?
祭出我们的大杀器——\(FFT\)。
考虑只有一个维怎么做。设两个多项式分别为\(A\)和\(B\)。
对于\(x_i\),就在\(A\)的\(x_i\)这一位上的系数加一;
对于\(x_j\),就在\(B\)的\(77-x_j\)这一位上的系数加一。
将\(A\)和\(B\)乘起来,那么\(77+x_i-x_j\)就是差\(x_i-x_j\)对应的个数。
对于三维,就将这三个数压成一维的就好了。
实际上也可以用NTT。仔细分析一下,就可以发现每个三元组的出现次数肯定是不超过\(998244353\)的。
正解
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cassert>
#include <cmath>
#define N 1000000
#define MX 3652264
#define mo 998244353
inline int input(){
char ch=getchar();
while (ch<'0' || '9'<ch)
ch=getchar();
int x=0;
do{
x=x*10+ch-'0';
ch=getchar();
}
while ('0'<=ch && ch<='9');
return x;
}
inline int my_pow(int x,int y){
int res=1;
for (;y;y>>=1,x=(long long)x*x%mo)
if (y&1)
res=(long long)res*x%mo;
return res;
}
inline int pow4(int x){x*=x;return x*x;}
#define M (1<<22)
#define bit 22
int n;
struct DOT{
int x,y,z;
inline DOT rev(){return {77-x,77-y,77-z};}
} d[N];
inline int pia(const DOT &a){return (a.x*154+a.y)*154+a.z;}
int a[1<<22],b[1<<22],cnt[1<<22];
int rev[1<<22];
inline void ntt(int *a,int flag){
for (int i=0;i<M;++i)
if (i<rev[i])
swap(a[i],a[rev[i]]);
for (int i=1;i<M;i<<=1){
int wn=my_pow(3,(mo+1)/(i<<1));
if (flag==-1)
wn=my_pow(wn,mo-2);
for (int j=0;j<M;j+=i<<1){
int wnk=1;
for (int k=j;k<j+i;++k,wnk=(long long)wnk*wn%mo){
int x=a[k],y=(long long)wnk*a[k+i]%mo;
a[k]=(x+y>=mo?x+y-mo:x+y);
a[k+i]=(x-y<0?x-y+mo:x-y);
}
}
}
if (flag==-1){
int invm=my_pow(M,mo-2);
for (int i=0;i<M;++i)
a[i]=(long long)a[i]*invm%mo;
}
}
inline void multi(int *a,int *b,int *c){
for (int i=1;i<M;++i)
rev[i]=rev[i>>1]>>1|(i&1)<<bit-1;
ntt(a,1),ntt(b,1);
for (int i=0;i<M;++i)
c[i]=(long long)a[i]*b[i]%mo;
ntt(c,-1);
}
DOT back[M];
int main(){
freopen("geometry.in","r",stdin);
freopen("geometry.out","w",stdout);
int Q;
scanf("%d%d",&n,&Q);
for (int i=1;i<=n;++i)
d[i]={input(),input(),input()};
for (int i=1;i<=n;++i){
a[pia(d[i])]++;
b[pia(d[i].rev())]++;
}
multi(a,b,cnt);
for (int i=0;i<MX;++i){
int j=i;
back[i].z=j%154-77;j/=154;
back[i].y=j%154-77;j/=154;
back[i].x=j-77;
// assert(pia(back[i])==i);
}
while (Q--){
int a=input(),b=input(),c=input(),d=input();
double ans=0;
for (int i=0;i<MX;++i)
if (cnt[i] && (back[i].x|back[i].y|back[i].z))
ans+=(long long)cnt[i]*abs(a*back[i].x+b*back[i].y+c*back[i].z+d)/sqrt(pow4(back[i].x)+pow4(back[i].y)+pow4(back[i].z));
ans/=(long long)n*(n-1);
printf("%.10lf\n",ans);
}
return 0;
}
总结
\(FFT\)和\(NTT\)真是个bug般的存在……
[JZOJ4330] 【清华集训模拟】几何题的更多相关文章
- [JZOJ4331] 【清华集训模拟】树
题目 题目大意 给你一棵带点权的树,求将树变成一堆不相交的链,而且这些链的权值和非负的方案数. 正解 显然这道题是个\(DP\). 首先求个前缀和\(sum\). 为了后面讲述方便,我这样设:\(f_ ...
- UOJ_274_[清华集训2016]温暖会指引我们前行_LCT
UOJ_274_[清华集训2016]温暖会指引我们前行_LCT 任务描述:http://uoj.ac/problem/274 本题中的字典序不同在于空串的字典序最大. 并且题中要求排序后字典序最大. ...
- Loj 2320.「清华集训 2017」生成树计数
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...
- 【UOJ#340】【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划)
[UOJ#340][清华集训2017]小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划) 题面 UOJ 洛谷 题解 考虑如何暴力\(dp\). 设\(f[i][a][b][c]\)表示当前到了第\(i\) ...
- 【UOJ274】【清华集训2016】温暖会指引我们前行 LCT
[UOJ274][清华集训2016]温暖会指引我们前行 任务描述 虽然小R住的宿舍楼早已来了暖气,但是由于某些原因,宿舍楼中的某些窗户仍然开着(例如厕所的窗户),这就使得宿舍楼中有一些路上的温度还是很 ...
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主
#2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较 题目描述 "A fight? Co ...
- [LOJ#2329]「清华集训 2017」我的生命已如风中残烛
[LOJ#2329]「清华集训 2017」我的生命已如风中残烛 试题描述 九条可怜是一个贪玩的女孩子. 这天她在一堵墙钉了 \(n\) 个钉子,第 \(i\) 个钉子的坐标是 \((x_i,y_i)\ ...
- [LOJ#2328]「清华集训 2017」避难所
[LOJ#2328]「清华集训 2017」避难所 试题描述 "B君啊,你当年的伙伴都不在北京了,为什么你还在北京呢?" "大概是因为出了一些事故吧,否则这道题就不叫避难所 ...
随机推荐
- OMG that's another blog!
目录 1.Beginning 2.then 1.Beginning we'v learnt how to ask file from our own computer and tried to bui ...
- 微信小程序开发之https服务器搭建三步曲
本篇文章主要讲述3个方面的内容,如下: 1.SSL证书的获取 2.服务器 Nginx SSL 证书的配置. 3.如何兼容80端口和443端口以及为什么要同时兼容这两个端口. 1.SSL证书的获取 ht ...
- 转载:mysql sql_safe_updates 分析
今天看到一个很实用的功能,mysql_safe_updates. 只是对功能做了转载,具体原理可以看一下 delete from table t where true ; update t set c ...
- python——pandas基础
参考: 实验楼:https://www.shiyanlou.com/courses/1091/learning/?id=6138 <利用python进行数据分析> pandas简介 Pan ...
- Number 的扩展
Number.parseInt(), Number.parseFloat() ES6 将全局方法parseInt()和parseFloat(),移植到Number对象上面,行为完全保持不变. Numb ...
- 一个简易h5涉及的ps技巧
事实证明,很长时间不做,是会忘掉的呀,的呀,呀,啊~ 1.合并图层 CTRL+E合并多个图层 2.切片 3.导出 文件-------导出------存储为web所用格式-------->> ...
- leetcood学习笔记-101-对称二叉树
题目描述: 方法一:递归: class Solution: def isSymmetric(self, root: TreeNode) -> bool: if not root: return ...
- centos做免密登录
CentOS 6.9 SSH配置用户免密码登录 1. 演示环境: 192.168.1.144:CentOS 6.9 x86_64 192.168.1.146:CentOS 7.4 x86_64 2. ...
- 二分+mu函数实质及应用(原理)!——bzoj2440好题
首先想到用二分来判断 不是平方数的倍数,即没有次数>=2的质因子显然用容斥原理,即所有答案-1个质因子的平方的所有倍数+2个质因子的所有平方倍...等价于对于每个数,如果它有奇数个质因子,那么其 ...
- delphi Sqlite
Delphi中SQLite如何读写二进制字段(Blob类型) 在Delphi中,有大量的组件可以操作SQLite数据库,如UniDAC就是其中一个比较优秀的,当然还有ASQLite3Component ...