吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm
from sklearn.model_selection import train_test_split def load_data_classfication():
'''
加载用于分类问题的数据集
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
X_train=iris.data
y_train=iris.target
# 分层采样拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4
return train_test_split(X_train, y_train,test_size=0.25,random_state=0,stratify=y_train) #支持向量机线性分类LinearSVC模型
def test_LinearSVC(*data):
X_train,X_test,y_train,y_test=data
cls=svm.LinearSVC()
cls.fit(X_train,y_train)
print('Coefficients:%s, intercept %s'%(cls.coef_,cls.intercept_))
print('Score: %.2f' % cls.score(X_test, y_test)) # 生成用于分类的数据集
X_train,X_test,y_train,y_test=load_data_classfication()
# 调用 test_LinearSVC
test_LinearSVC(X_train,X_test,y_train,y_test)
def test_LinearSVC_loss(*data):
'''
测试 LinearSVC 的预测性能随损失函数的影响
'''
X_train,X_test,y_train,y_test=data
losses=['hinge','squared_hinge']
for loss in losses:
cls=svm.LinearSVC(loss=loss)
cls.fit(X_train,y_train)
print("Loss:%s"%loss)
print('Coefficients:%s, intercept %s'%(cls.coef_,cls.intercept_))
print('Score: %.2f' % cls.score(X_test, y_test)) # 调用 test_LinearSVC_loss
test_LinearSVC_loss(X_train,X_test,y_train,y_test)
def test_LinearSVC_L12(*data):
'''
测试 LinearSVC 的预测性能随正则化形式的影响
'''
X_train,X_test,y_train,y_test=data
L12=['l1','l2']
for p in L12:
cls=svm.LinearSVC(penalty=p,dual=False)
cls.fit(X_train,y_train)
print("penalty:%s"%p)
print('Coefficients:%s, intercept %s'%(cls.coef_,cls.intercept_))
print('Score: %.2f' % cls.score(X_test, y_test)) # 调用 test_LinearSVC_L12
test_LinearSVC_L12(X_train,X_test,y_train,y_test)
def test_LinearSVC_C(*data):
'''
测试 LinearSVC 的预测性能随参数 C 的影响
'''
X_train,X_test,y_train,y_test=data
Cs=np.logspace(-2,1)
train_scores=[]
test_scores=[]
for C in Cs:
cls=svm.LinearSVC(C=C)
cls.fit(X_train,y_train)
train_scores.append(cls.score(X_train,y_train))
test_scores.append(cls.score(X_test,y_test)) ## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(Cs,train_scores,label="Traing score")
ax.plot(Cs,test_scores,label="Testing score")
ax.set_xlabel(r"C")
ax.set_ylabel(r"score")
ax.set_xscale('log')
ax.set_title("LinearSVC")
ax.legend(loc='best')
plt.show() # 调用 test_LinearSVC_C
test_LinearSVC_C(X_train,X_test,y_train,y_test)
吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型的更多相关文章
- 吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——支持向量机线性回归SVR模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——局部线性嵌入LLE降维模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——数据预处理流水线Pipeline模型
from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn import neighbor ...
- 吴裕雄 python 机器学习——K均值聚类KMeans模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——混合高斯聚类GMM模型
import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.metrics ...
- 吴裕雄 python 机器学习——超大规模数据集降维IncrementalPCA模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——数据预处理正则化Normalizer模型
from sklearn.preprocessing import Normalizer #数据预处理正则化Normalizer模型 def test_Normalizer(): X=[[1,2,3, ...
随机推荐
- 洛谷 pP2708 硬币翻转
题目描述 从前有很多个硬币摆在一行,有正面朝上的,也有背面朝上的.正面朝上的用1表示,背面朝上的用0表示.现在要求从这行的第一个硬币开始,将前若干个硬币一起翻面,问如果要将所有硬币翻到正面朝上,最少要 ...
- 文本harry potter的字符统计
实现计算文件中字符的占比和不同单词的个数两项功能,首先将文本文件按行导入到程序中,再通过charAT()函数来实现对单个字符的操作,并用集合来统计字符总数以及不同的字符的个数,进而输出各个字符的个数以 ...
- 查看Sql Server库中某张表的结构
--快速查看表结构(比较全面的) SELECT CASE WHEN col.colorder = THEN obj.name ELSE '' END AS 表名, col.colorder AS 序号 ...
- C语言 goto
C语言 goto 功能:无条件跳转.不推荐使用 案例 #include <stdio.h> int main() { // 函数跳转.循环跳转 // 创建标志位开始 // 无条件跳转到En ...
- C++ log4cpp使用(转)
参考文章: 1.常用C++库(1)日志库 https://blog.csdn.net/qilimi1053620912/article/details/87378707 2.一步步入门log4cpp ...
- lnmp1.5一键安装包安装lnmpa后,添加站点
lnmp1.5一键安装包安装lnmpa后,添加站点 (1)添加站点 (2)配置apache配置文件 在/usr/local/apache/conf/vhost文件夹下,修改webApp站点配置文件ap ...
- 题解【AcWing275】[NOIP2008]传纸条
题面 首先有一个比较明显的状态设计:设 \(dp_{x1,y1,x2,y2}\) 表示第一条路线走到 \((x1,y1)\) ,第二条路线走到 \((x2,y2)\) 的路径上的数的和的最大值. 这个 ...
- 其他 - YAML 入门
概述 简单介绍 YAML 语言 背景 很多地方, 都在使用 YAML k8s spring 其他 准备 验证工具 YAML.YML在线格式化校验工具 一个 YAML 转换 JSON 的工具 通常来说, ...
- shiro认证和授权
一.shiro基础概念 Authentication:身份认证 / 登录,验证用户是不是拥有相应的身份: Authorization:授权,即权限验证,验证某个已认证的用户是否拥有某个权限:即判断用户 ...
- python3安装虚拟环境(windows)
1.pip install virtualenv :安装命令 2.pip install virtualenvwrapper-win:安装命令 3.配置WORKON_HOME环境变量: 变量名:W ...