网页链接:点击打开链接

Apart from plush toys, Imp is a huge fan of little yellow birds!

To summon birds, Imp needs strong magic. There are n trees in a row on an alley in a park, there is a nest on each of the trees. In the i-th nest there are ci birds; to summon one bird from this nest Imp needs to stay under this tree and it costs him costi points of mana. However, for each bird summoned, Imp increases his mana capacity by B points. Imp summons birds one by one, he can summon any number from 0 to ci birds from the i-th nest.

Initially Imp stands under the first tree and has W points of mana, and his mana capacity equals W as well. He can only go forward, and each time he moves from a tree to the next one, he restores X points of mana (but it can't exceed his current mana capacity). Moving only forward, what is the maximum number of birds Imp can summon?

Input

The first line contains four integers nWBX (1 ≤ n ≤ 103, 0 ≤ W, B, X ≤ 109) — the number of trees, the initial points of mana, the number of points the mana capacity increases after a bird is summoned, and the number of points restored when Imp moves from a tree to the next one.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ 104) — where ci is the number of birds living in the i-th nest. It is guaranteed that .

The third line contains n integers cost1, cost2, ..., costn (0 ≤ costi ≤ 109), where costi is the mana cost to summon a bird from the i-th nest.

Output

Print a single integer — the maximum number of birds Imp can summon.

Examples
input

Copy
2 12 0 4
3 4
4 2
output
6
input

Copy
4 1000 10 35
1 2 4 5
1000 500 250 200
output
5
input

Copy
2 10 7 11
2 10
6 1
output
11
Note

In the first sample base amount of Imp's mana is equal to 12 (with maximum capacity also equal to 12). After he summons two birds from the first nest, he loses 8 mana points, although his maximum capacity will not increase (since B = 0). After this step his mana will be 4 of 12; during the move you will replenish 4 mana points, and hence own 8 mana out of 12 possible. Now it's optimal to take 4 birds from the second nest and spend 8 mana. The final answer will be — 6.

In the second sample the base amount of mana is equal to 1000. The right choice will be to simply pick all birds from the last nest. Note that Imp's mana doesn't restore while moving because it's initially full.

题目大意:一共有n棵树,刚开始有w元,第i棵树上有nb[i]只鸟,第i棵树上的鸟要花c[i]元,每走一棵树增加x元,每买一个鸟会让钱包容量增加b,问最多能买到几只鸟?

解法:背包dp,不过这题要根据数据范围选好下标,下标不能是1e9的钱数,dp的值不能是鸟数,鸟数可以用来当成下标

dp[i][j]表示走到第i棵树下,这时候已经买了j只鸟,剩下的钱数,dp[i][j] = max{dp[i-1][j - k] - k * c[i-1] + x}

坑点:每次更新dp[i][j]的时候钱不能超过钱包容量,而且要算出买几只鸟能让dp[i][j]最大,所以用了个嵌套的max,min,但是!!我居然学别人在开头define了max和min,导致嵌套了个寂寞,以后要么自己定义函数,要么直接用algorithm中的max,别再define了!

代码里还是有蛮多细节技巧的,仔细看看

#include<cstdio>
#include<cstring>
#include<algorithm>
//#define min(a, b) a>=b?b:a //←罪魁祸首!!!
//#define max(a, b) a>=b?a:b //←你也是!!!!
typedef long long ll;
using namespace std; const int maxn = 1000 + 100;
const int maxw = 10000 + 100;
ll c[maxn], nb[maxw];
ll dp[maxn][maxw];//dp[i][j]表示走到第i棵树下,这时候已经买了j只鸟,剩下的钱数
//dp[i][j] = max{dp[i-1][j - k] - k * c[i-1] + x} int main(){
ll n, w, b, x;//走一棵树加x钱,买一只鸟增加容量b;
scanf("%lld %lld %lld %lld", &n, &w, &b, &x);
int mana = w, max_mana = w;
for(int i = 0; i < n; i++) scanf("%d", &nb[i]);
for(int i = 0; i < n; i++) scanf("%d", &c[i]);
ll sum = 0;
memset(dp, -1, sizeof(dp));//最后还为-1的dp就是不可能达到的
dp[0][0] = w;//当i等于0的时候,即在第一棵树下的时候,这时候一只鸟都没买,所以当i=0时只有j=0这种情况
for(int i = 1; i <= n; i++){//从刚到第二棵树下开始循环(正在第二颗树下,还没决定在第二颗树买几只鸟)
sum += nb[i-1];//此时站在第i棵树下,最多买了sum只鸟,也就是前面的全买了 for(int j = 0; j <= sum; j++){
for(int k = 0; k <= nb[i-1] && k <= j ; k++){//这个循环用来解决dp[i][j]的最大值能是多少
if(dp[i-1][j-k] == -1){/*printf("j = %d, k = %d, dp[%d][%d] = %d\n", j, k, i-1, j-k,dp[i-1][j-k]);*/continue;}
if(dp[i-1][j-k] - k * c[i-1] < 0 ) {/*printf("nonono!\nk = %d, j = %d\n", k, j);*/continue;}//没钱了, 这时候还没走到下一棵树,所以不要加x
dp[i][j] = max(dp[i][j], min(dp[i-1][j-k] - k*c[i-1] + x, w + j * b));//更新最大的dp,同时注意钱包的上限
//printf("dp[i-1][j-k] - k*c[i-1] + x为%d\n此时w+j*b为%d, dp[%d][%d]应该为%d\n", dp[i-1][j-k] - k*c[i-1] + x,w+j*b, i, j, min(dp[i-1][j-k] - k*c[i-1] + x, w + j * b));
}
//printf("dp[%d][%d] = %d, sum = %d\n", i, j, dp[i][j], sum);
} }
ll ans;
for(int i = 0; i <= sum; i++)
if(dp[n][i] != -1) ans = i;
printf("%lld\n", ans);
return 0;
}

Codeforces 922 E Birds (背包dp)被define坑了的一题的更多相关文章

  1. Codeforces 864E Fire(背包DP)

    背包DP,决策的时候记一下 jc[i][j]=1 表示第i个物品容量为j的时候要选,输出方案的时候倒推就好了 #include<iostream> #include<cstdlib& ...

  2. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  3. Codeforces 730J:Bottles(背包dp)

    http://codeforces.com/problemset/problem/730/J 题意:有n个瓶子,每个瓶子有一个当前里面的水量,还有一个瓶子容量,问要把所有的当前水量放到尽量少的瓶子里至 ...

  4. Codeforces 946 课程表背包DP 数位DFS构造

    A B 给你A,B 两个数      1.a=0 OR b=0 break      2.a>=2b a=a-2b        3.b>=2a b=b-2a 如果只是单纯模拟肯定会超时 ...

  5. Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 背包dp

    D. Yet Another Subarray Problem You are given an array \(a_1, a_2, \dots , a_n\) and two integers \( ...

  6. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  7. G - Surf Gym - 100819S -逆向背包DP

    G - Surf Gym - 100819S 思路 :有点类似 逆向背包DP , 因为这些事件发生后是对后面的时间有影响. 所以,我们 进行逆向DP,具体 见代码实现. #include<bit ...

  8. luogu 4377 Talent show 01分数规划+背包dp

    01分数规划+背包dp 将分式下面的部分向右边挪过去,通过二分答案验证, 注意二分答案中如果验证的mid是int那么l=mid+1,r=mid-1,double类型中r=mid,l=mid; 背包dp ...

  9. bzoj1625:[Usaco2007 Dec]宝石手镯(背包dp板子)

    1625: [Usaco2007 Dec]宝石手镯 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1349  Solved: 954[Submit][St ...

随机推荐

  1. bootstrap:图片轮播

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name ...

  2. docker发布.net core程序的坑

    docker发布遇到的两个问题 1:Could not resolve CoreCLR path. For more details, enable tracing by setting COREHO ...

  3. C++Primer第五版 3.2.3节练习

    练习 3.6:编写一段程序,使用范围for语句将字符串内的所有字符用X代替. #include<iostream> #include<string> using namespa ...

  4. 【转】Java 正则表达式详解

    正则表达式30分钟入门教程 常用正则表达式 如果你曾经用过Perl或任何其他内建正则表达式支持的语言,你一定知道用正则表达式处理文本和匹配模式是多么简单. 如果你不熟悉这个术语,那么“正则表达式”(R ...

  5. Scala实践14

    1.Scala的future 创建future import scala.concurrent._ import ExecutionContext.Implicits.global object Fu ...

  6. 通过核心API启动单个或多个scrapy爬虫

    1. 可以使用API从脚本运行Scrapy,而不是运行Scrapy的典型方法scrapy crawl:Scrapy是基于Twisted异步网络库构建的,因此需要在Twisted容器内运行它,可以通过两 ...

  7. 最大区间和变形 - codeforces

    题意 : 可以选择操作一串区间,将区间内的某一个数全部变成一个新的数字,询问整个区间中某个数字的出现次数总共有多少个? 思路分析 : 首先最后选的一定是一个区间,然后 ans = cnt(1, l-1 ...

  8. MST + 树形 dp

    Genghis Khan(成吉思汗)(1162-1227), also known by his birth name Temujin(铁木真) and temple name Taizu(元太祖), ...

  9. 关于爬虫的日常复习(2)—— urllib库

  10. ORM基础1

    1.增删改查 .models.类.object.all() 获取所有对象->select * from 表 2.models.类.object.get(id=1) 获取id为1的对象->s ...