The Divide and Conquer Approach - 归并排序
The divide and conquer approach - 归并排序
归并排序所应用的理论思想叫做分治法.
分治法的思想是: 将问题分解为若干个规模较小,并且类似于原问题的子问题,
然后递归(recursive) 求解这些子问题, 最后再合并这些子问题的解以求得
原问题的解.
即, 分解 -> 解决 -> 合并. The divide and conquer approach
分解: 将待排序的含有 n 个元素的的序列分解成两个具有 n/2 的两个子序列.
解决: 使用归并排序递归地排序两个子序列.
合并: 合并两个已排序的子序列得出结果. 归并排序算法的 '时间复杂度' 是 nlogn import time, random def sortDivide(alist): # 分解 divide
if len(alist) <= 1:
return alist
l1 = sortDivide(alist[:alist.__len__()//2])
l2 = sortDivide(alist[alist.__len__()//2:])
return sortMerge(l1,l2) def sortMerge(l1, l2): # 解决 & 合并 sort & merge
listS = []
print("Left - ", l1)
print("Right - ", l2)
i,j = 0,0
while i < l1.__len__() and j < l2.__len__():
if l1[i] <= l2[j]:
listS.append(l1[i])
i += 1
print("-i", i)
else:
listS.append(l2[j])
j += 1
print("-j", j)
print(listS)
else:
if i == l1.__len__():
listS.extend(l2[j:])
else:
listS.extend(l1[i:])
print(listS)
print("Product -",listS)
return listS def randomList(n,r):
F = 0
rlist = []
while F < n:
F += 1
rlist.append(random.randrange(0,r))
return rlist if __name__ == "__main__":
alist = randomList(9,100)
print("List-O",alist)
startT =time.time()
print("List-S", sortDivide(alist))
endT = time.time()
print("Time elapsed :", endT - startT) output,
List-O [88, 79, 52, 78, 0, 43, 21, 55, 62]
Left - [88]
Right - [79]
-j 1
[79]
[79, 88]
Product - [79, 88]
Left - [52]
Right - [78]
-i 1
[52]
[52, 78]
Product - [52, 78]
Left - [79, 88]
Right - [52, 78]
-j 1
[52]
-j 2
[52, 78]
[52, 78, 79, 88]
Product - [52, 78, 79, 88]
Left - [0]
Right - [43]
-i 1
[0]
[0, 43]
Product - [0, 43]
Left - [55]
Right - [62]
-i 1
[55]
[55, 62]
Product - [55, 62]
Left - [21]
Right - [55, 62]
-i 1
[21]
[21, 55, 62]
Product - [21, 55, 62]
Left - [0, 43]
Right - [21, 55, 62]
-i 1
[0]
-j 1
[0, 21]
-i 2
[0, 21, 43]
[0, 21, 43, 55, 62]
Product - [0, 21, 43, 55, 62]
Left - [52, 78, 79, 88]
Right - [0, 21, 43, 55, 62]
-j 1
[0]
-j 2
[0, 21]
-j 3
[0, 21, 43]
-i 1
[0, 21, 43, 52]
-j 4
[0, 21, 43, 52, 55]
-j 5
[0, 21, 43, 52, 55, 62]
[0, 21, 43, 52, 55, 62, 78, 79, 88]
Product - [0, 21, 43, 52, 55, 62, 78, 79, 88]
List-S [0, 21, 43, 52, 55, 62, 78, 79, 88]
Time elapsed : 0.0010027885437011719
The Divide and Conquer Approach - 归并排序的更多相关文章
- 【LeetCode】分治法 divide and conquer (共17题)
链接:https://leetcode.com/tag/divide-and-conquer/ [4]Median of Two Sorted Arrays [23]Merge k Sorted Li ...
- 算法与数据结构基础 - 分治法(Divide and Conquer)
分治法基础 分治法(Divide and Conquer)顾名思义,思想核心是将问题拆分为子问题,对子问题求解.最终合并结果,分治法用伪代码表示如下: function f(input x size ...
- 算法上机题目mergesort,priority queue,Quicksort,divide and conquer
1.Implement exercise 2.3-7. 2. Implement priority queue. 3. Implement Quicksort and answer the follo ...
- [LeetCode] 236. Lowest Common Ancestor of a Binary Tree_ Medium tag: DFS, Divide and conquer
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
- [LeetCode] 系统刷题4_Binary Tree & Divide and Conquer
参考[LeetCode] questions conlusion_InOrder, PreOrder, PostOrder traversal 可以对binary tree进行遍历. 此处说明Divi ...
- [LeetCode] 124. Binary Tree Maximum Path Sum_ Hard tag: DFS recursive, Divide and conquer
Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as any ...
- 分治法 - Divide and Conquer
在计算机科学中,分治法是一种很重要的算法.分治法即『分而治之』,把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的 ...
- [算法]分治算法(Divide and Conquer)
转载请注明:http://www.cnblogs.com/StartoverX/p/4575744.html 分治算法 在计算机科学中,分治法是建基于多项分支递归的一种很重要的算法范式.字面上的解释是 ...
- Divide and Conquer.(Merge Sort) by sixleaves
algo-C1-Introductionhtml, body {overflow-x: initial !important;}html { font-size: 14px; }body { marg ...
随机推荐
- iOS多线程编程原理及实践
摘要:iOS开发中,开发者不仅要做好iOS的内存管理,而且如果你的iOS涉及多线程,那你也必须了解iOS编程中对多线程的限制,iOS主线程的堆栈大小为1M,其它线程均为512KB,且这个限制开发者是无 ...
- ArcGIS for JavaScript 开发智能提示
开发如果没有智能提示,可想而知是一件多举痛苦的事情,好在Esri为Visual Studio 2010.Aptana3提供了一个插件,这样就使我们在使用ArcGIS API for Javascrip ...
- mongodb的文本搜索
1.当mongodb进程文本搜索的时候, 一个collection,只有一个文本查询的索引. 2.全文索引的定义,搜索的是有意义的词,不是字母 一开始是简单的用中文姓名的姓,如:张,来查询,但是无效, ...
- 深入理解 CSS(Cascading Style Sheets)中的层叠(Cascading)
标题中的 Cascading 亦可以理解为级联. 进入正文,这是一个很有意思的现象.可以直接跳到 总结一下 部分,看完再回过头来阅读本文. 引子 假设我们有如下结构: <p class=&quo ...
- Scala 学习(3)之「类——基本概念1」
类 小提示:可以通过:paste进入 Scala 的多行模式,输入对应的代码块之后,按ctrl + D退出多行模式,然后再调用刚才输入的函数或者方法进行测试 //定义类,包含 field 以及方法 c ...
- 【LC_Lesson2】---整数反转练习
题目描述: 给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转. 示例 1: 输入: 123 输出: 321 示例 2: 输入: -123 输出: -321 示例 3: 输入: 1 ...
- 切蛋糕(贪心 or 优先队列)
链接:https://www.nowcoder.com/acm/contest/80/D来源:牛客网 最可爱的applese生日啦,他准备了许多个质量不同的蛋糕,想请一些同学来参加他的派对为他庆生,为 ...
- sql server 新建用户 18456
麻辣各级,今天阴沟里翻船 了,自己在家创建sqlserver新的用户名,一直报错 18456 邮件添加用户名这一套下来是没错. 重要是这样===>要重新启动一下sql server,就ok了. ...
- Spring Boot 入门(十二):报表导出,对比poi、jxl和esayExcel的效率
本片博客是紧接着Spring Boot 入门(十一):集成 WebSocket, 实时显示系统日志写的 关于poi.jxl和esayExcel的介绍自行百度. jxl最多支持03版excel,所以单个 ...
- (转自360安全客)深入理解浏览器解析机制和XSS向量编码
(译者注:由于某些词汇翻译成中文后很生硬,因此把相应的英文标注在其后以便理解.这篇文章讲的内容很基础,同时也很重要,希望对大家有所帮助.) 这篇文章将要深入理解HTML.URL和JavaScript的 ...