GDUT 校赛01 dp
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABT8AAAILCAIAAAChHn9YAAAgAElEQVR4nOy9f4il13nneUGgxrRYux1aoz8U24kIYu0JyuQVRshZiMc/kp0M3ghPq6iQxhnbG+0wjgJNsabkwgITQcSuxhT2eAtPJ+O1M8SeUTqa8XSNkq0xwmTtzhqPUctSUnZMvOY2kZON1ODGtJqGs3/UrXvfOud5nvOc931P1Xu7Pl8+FLfOe95znvM8532rvvfeujUJCCGEEELHUjduHHUEvXULLAEhhJBTk6MOACGEEEIIIYQQQhnh3hFCCCGEEEIIobEL944QQgghhBBCCI1duHeEEEIIIYQQQmjswr0jhBBCCCGEEEJjF+4dIYQQQgghhBAau3DvCCGEEEIIIYTQ2IV7RwghhBBCCCGExi7cO0IIIYQQQgghNHbh3hFCCCGEEEIIobEL944QQgghhBBCCI1duHeEEEIIIYQQQmjswr0jhBBCCCGEEEJjF+4dIYQQQgghhBAau6q79w/eFyaTmNtPhn/4QPjXXwqv1Z6+k5r9OHeHGG2egYvfHmI4hBBCCCGEEELHT0fj3ufc995w5UbtEIrVx73fvBH+4PHwbMuo494RQgghhBBCCPXUEbv3yST84ofCj2sHcVi68lL4pXsx6gghhBBCCCGEBtbhufe2of3+X4Tf+VC4bd/AP/2N2lEckniZHSGEEEIIIYRQDR2Ne9/T767MDj302KLx5o3w9KfDvadnh+59IDz9XLh58MQXngu/8kC448Ssz513h8c+HV5N3oHf7nbHqfDQI+HKtcXRi0/OTv/AE+F3fj3cPgm3nwyPfy4E6Z3zey133Rde+k546IFw+yRMJqF5d/jad2YdXv52uCt5W8FTz1gZ+OqXwgNvmw31htPh7LkD4YUQnjq7GOerX5rl5PaT8UIQQgghhBBCCN3yOkr3/oOvh9dPwmQSfvqd4WoIIYSbN8Lae4V313/4yYWB/9Yz4aT0Dvy3vjf8fWvwi/9qZozbnLo7vPDKfod99/4Tp+N3AWju/fVvCqdPHBjwthPhy8+HUOjetWWePB2efX6xhLl7v+vuRYR7/Nz7b50/N0AIIYQQQgghlNVRuvebN8I/2n9N++UQQgjPbc1s6j9/Ily7Ea69Ej7+/vjd9fMB/8Ofh5shXHslPPrOWcvWn876/PDFmZc+eTp8/fshhPDHT8xGfv9jsycC5u59Mgn/x38JN0P4y2+FH4UQdPc+mYS3vjP81SvhtWvhXz86G7BtpMXFpo1/+NjiQ/v+6pVw80bY+f3ZUxInT4e/2n8Twdy933YifP65cDOEbzy9eObim68EhBBCCCGEEELHREfp3kPrHel77n3lntlL3D/Y7/A3z4c7J2EyCe95dNby4P6r3//yyXBFcbBze7z36vee3nMqTCbhdafCX4cQWu59/sp/FJXo3r/yvVnLzRvhnadmjV/dD9fj3m/eCG8/MYvku613+//B/zrr9vgXZi1z9/7BJ735RAghhBBCCCF0S2pEr73/+JXwVv2j6e++P/xdCKHlaSf7f3z+uS+Hawf/6P3cO/MWd+7e2391vyfNvd/5tvA3rW7zSH7vK9Zio8a//kp43SRMJuEfrR74e/7vXpy9mN+cjcdvPwfx+Ptw7wghhBBCCCF07DSiv3sX/3R8zvz1+deuhbVfif8O/PaT4bFPz973bk8619y9t1/Z3pPxqXUvt7ql7trj3nef2X/e4Wxoa758273PG3HvCCGEEEIIIXR8dJTuff7+9r1Xv6/+IPy0ZJJFXXsl/PG/DQ+/O9x5auHhVx6fHX3k/iruvf2W/iC99i7OW/ra+4MfisfHvSOEEEIIIYTQMdfRuPdX/zacf3zxAWzzT6R76E2zlvlHsn3zC6rHnuulndlr+HPbP39eYP435KH9dvoXQ+jk3icH/zV9Gq1oraMM/PiV8HPm373/zhfj0XDvCCGEEEIIIXTMdXjuXeMXP7T4zPanH581vv394cq18Oo0/JN7wmQSbjsRnvteCCH8/ffCW/Y/m33nhXAzhJs3wv/1b2avZr/1fbOh2p85/5WXQgjh61+aPVnwM++c/WO5bu79zfeHF6bh5o3w+ceEz5yfW+tPXQyvXQuvXjuQgbnf/r1HZy3pZ86/8Z7w/eQz53HvCCGEEEIIIXTMdcTu/b73hiut159v3ggfvl/o9ol/t+gj/iP3Setfrxvdbj8ZLu736fbO+Z85fWDAk6fDt1rv8m//F7qJ+f/e/8WDwhK0//eOe0cIIYQQQgihY66jce+3nwz/8IHwuS+H15L+N2+Epz8d3nr37JXtt7wtfPG5A38fHkL4y/8nnG39xfsbTodf+fXwwjQe6oXnwq88EO44ESaTcMepuE+3T6377jT89q+G2yfhthPhF341nvTmjfDJRxYzPv65AxmI/PZXvxTe9cDsKYY3nA5nz4Ur1w50wL0jhBBCCCGEENpTdfd+a0j8zHmEEEIIIYQQQuhwhHt3CfeOEEIIIYQQQugIhXt3CfeOEEIIIYQQQugIhXt3CfeOEEIIIYQQQugIhXtHCCGEEEIIIYTGLtw7QgghhBBCCCE0duHeEUIIIYQQQgihsQv3jhBCCCGEEEIIjV24d4QQQgghhBBCaOyq696nV68DAAAAAAAAHAeq+mvcOwAAAAAAAMAAVPXXI3XvTdOIjXuK+kSdxXON9vSo3fMwsfMwz0ba4l+43bPSXH1Cch7S4mxvG/+67Aizc6XfZlPdeZxsipw1TR8Y39rBa/InudtuEZMs7gT/Wf5UO/PceXXZzvZEztGGKlPn/Ay1D7OLKqpXz4LaK62Ev+KeNPbP4SABO6M9/Lr7s+1ZYHvqPtMNQjpXz7p3C75xXzg96y7ugT5L8NTUX+jO2dOU7daniD1r4V9dt1R0HqfP8vtXE8ZJVX89Uvc+lX5Man3EB/NvPXeo6MTsIGJg/rlKk5ANVQw+O3vaQVymZy47YDs5aUo9A2anyxY3fZCdrttcnrUPOM5Q+yebK0+7/7F/Uf5ypKtLkylmyU54dLq4hKI8ly5NzI8nb9k828MWhTpgftrh2ftNazc2iXPn2PGkj+08p1PMvy1KtTFROk5a5XYt0rpoWR0kh87ViWu0wzBmqV13YxxnyYxB7I2hHcrO4qlCdJa4f7I5NCKJ1liUH8/WEo96YhbP9YzWoabOtdv9iyrryV52+aVT96lFhxWJyfEnrWgcsVjGKaW1gKWjqr8er3uP6LmnjUvFVjpCk9x/B4/WHqfoTifefdpnaTcd/1yeHNoJ0eIXZ/TUS0xCWjj7rG41EufybIyhxhlk/5TWVCuEPVS3+I3OWoRaAtPFOsMQsxR19uS5w9I8+ckObp9oLMEf8CD5MTZPWmWxv3/5znppOSmtRbQDtXlLEfeqkRajLuKSB8lh0ULsPW+v7kjq7jxqDBhtb22rGCrKgKcQ4vjGWowk2BlzHuq2l0rrrq06LVDUYoxj1DS7f4xDfbDz79ldYnKyaS+qhX8t4uylG6loHHvwdnK0JWsaqsRwJFT117eCe7d3fOndR5srugLFC9ITbf9Vi3e67L1Guz/675v+uTwrSjt77nT2FO1uaZza+Nl1ZVfkmSu7D4caZ5D9Y2dAHMHuYD/2B9+zLuJRO1fiIOmqtZZB9pgWYTSFZ3vYHRpp13WoxVD5see1xzdO12rtj8dfUKPdGLZ0b3gq1Z4lDVs7qi2tcw5LF2LXNB3Tk4F6dc/GIw6eziWOL9ZLW0XR3sgWQsxSh7ob2SiKWZxFG6d/3Z2rNkb219SYNBrNyHOHEjsP2cnM7sPOtei5ojTnns2TbbEHSevVIeGwvFT112N07+1bp3ZtpLe89unpgH0KoAVgjNx/Ru1BGk96VEtd2sfInjiOOJf4bfb2pJXJedQoipG36JBzXaXFyua26jhD7Z/SPKfdtENpH2MJRYUQ40yDSZeZrsUOxq6LmD0xz6ULTFfaIXVGB0/1/aH2z48dSTSg2NMIQNwbnnpppxdlO1qgkbcOO0Q8ZK/L82DAHGYX4q+p3eHQ6t4+PR0wLXG0AbQ9YCzcWfrS5IsnatMZS05H0CqlxWa0e5bfv+5pf21Sz8h2TbUgxW0TjSnWqLTERqrFqnmODliLbisSA/OP7BnHzl5Uu2yuxPzAklLVX4/RvU+ljWu0RIfE6027crIdtOmiW4xnrg7Lty/vNAw7G+lZaR7Sx865tHm1xrSDnVLPJinNlTZ7upY+czn3xlDjDLh/tBp50lJUen9li6bQqtlOppEEI8/Ox848Z9eVzm73sWP2r8vYOfYGGDY/4no77ENxIUaj1i07TjbP6RaNvnXuDbEcWrqiEnSr+yA57Fysbsk5nLr3KVNa/Wz2shtMS0KH7Gn7JLsW5+rE2LT9bDQOXnf7xCgPRZXNFiVbR232opoWbSF7QCPVg9Siw7rEcz1rH3wcY/8YW0VbYGl14Kio6q9vZffuH6poHO1S9EwxdVx+2m1LnFG717TnSm8HnttE0VzporJJtu+GRkh2ltKhogyIqxD7ZAN2zmUEWWmcAfePnYRoA2gVNA5li5uO498SafaMRXmKbpzijCetry07ck/ejO3hzJuxc+xJ++fHLpnYITuIZyFGvYzpivKQbgOxvzayPZE/e+JRLY2D5NC5rg61rhdzml5xUR6y/cUYtHWlo5XmJ1sLbSJtUZ4ctvsYqxBrZO8Ku9Yd6q5lTMyM3ZKthaeDEYO/pp49aQSTZqOdMU+q+9fCiMfeOfaStRb/OHaN0gdFebaDgbFR1V+P3b0bu9no0x7Hc6lHA3rGNy6kqEN61L72xMtVG1lrmSY3Du0sO0WeudKEiMWypWVey0N2hDQ2sS5auoxgtIIaczlXPdQ4g+wfZyHEhGiJyvZxpto42s6JVnGtp7hwMdXzs4yK+POcJd0GnlDT7ZHtE+XNHiq7B4bKTzpXo9TLaDSS3zMeIxXpOOKhKCdpyTzbI7vB2t200ttZHTaH9rqKau1sr1p3Y7dHebb7iDvB88BIQvZQ9kRPzJ6sil+1EmdrlwY2bN3tAY2zetbU2HjpmNryjZr690a2j1FKfx39mXfGaU8t72Mp+J7jGJUSC6S1G/mEMVPVX4/avWv7O+qTNqYdxMG1ke1vjRnt8bWRS2NIr3/PTUfrk+2ZncsTeVEGtNufc5x0dcZ6PXNl76f+r1rww47Tf/9oW8IzYFpBu0Pp9tAO2Vn1NBoLF9vt/PjznCXaq/bO0RJi7x9tHHtkbRXD5qf/PvSUu3M8dmLtukRzeaI1SuA50S6ZlsbBc2ivy47H080zY+26Z9dl1FSMTVuaFkmHqLRD6bxRANkcal/TIno2jKey/etuzGj0EVucNdVklyzbwSZbfTFdnl0xYC2K1pKtqTOlHcZJj2Zz4gyvHQ8sBVX99Xjdu31tTA/uY/He0e6WvRVOk2tMu+lEtxt7EHsWTx48jcakxs03eyMumsu+R2crmBbduP1pSmcRT087eAqXLZMxlxZ2pXEG3D9iPFoy/aX35LP09PauNvKZbn57k4ipTr/1Z7IoFVoJxOqLeyOayO4gtpRGWyk/RiTO8e1D/njsdXnOFXeUkf+ifaK1Z8uRbpXSuTrksHQtWjdP/0Ouu9iSbgBtJ9gzFhXL7pAt9CDXsvbVCMAfc6W96rwjRUX0rD27fGOB0WjpFsompEOenRnW4ulfi6K1RKeL+RE1yDjpUWNYLc9Fq4ZxUtVfj9e9zx9o14a4y8VLThvc2Z6dosNcpXnw99G+1ZagZcyzQCPP2umeFEUBOOuiDSLePe1ldiuTMZexzBrjeA45a2rsH0+jdsgOrFtRtF2dbifxsdjHvpqGunY8SxOvHU/esvMa8Xe+WAa/twyyD4uS77nXZQPzHxrkdqSdbmzm9j2nKEs9c9h5LcYSBhzTrp1Rd01RH2dyjKHSYOxbROetNdS1rH01YvMvp9Je1YpoZCAbmFZTY/OIJU5r0Rk7/0ah0xGyUXWuhX8t9oXgjK3zOMY1Ej1IayrG0KeycLRU9dcjde9z7GtD6yBehMZdWBsqatdunemkzkP2wkvvHeIpHe6VWsz2XO07UZptey1phu1xDGV3S5PcNz3jOEtm5NA/yyDjOBcijmxsgGhYrY9dXO1cf9jGcsTY2uvy1N0exCiWp1vpGqMEGtXPdvDvn3Rp3erSMz9aZ61e2Widybfrpc3btPZYNmbxlA4ZtrOtraWdYS3O7Bbqk0PnWox4jHVVitmuu2dYO2Y7mHTDaGd1W7uzIvZcRg7FqLRBsok1tseAdRdLYMRs7x+7pkXJb59rbCHPsEVrMfLcZ66iHHrOFQPOriitSLdxnBXMph2Wnar+euzuHQAAAAAAAGApqOqvce8AAAAAAAAAA1DVX+PeAQAAAAAAAAagqr/GvQMAAAAAAAAMQFV/jXsHAAAAAAAAGICq/hr3DgAAAAAAADAAVf017h0AAAAAAABgAKr6a9w7AAAAAAAAwABU9de4dwAAAAAAAIABqOqvce8AAAAAAAAAA1DVX+PeAQAAAAAAAAagqr/GvQMAAAAAAAAMQFV/vQTuvWkasbEtscU4vXTe+eNoNPHbJlH2FOfs/vwcIeny+0c44FBLgSeHRZvcv4UOP8O32AWuddNmP+SE2xvJXyA7jf2j6tzzaDdzTzwBL92i/AvxX/XaWZ2T3OcuZPSpnTRjij7Z0JZvFK503s7LT9Vt4c7Og+QHAI4hVf31Erv36LF294we+3/Qaj8m0wfO9iha/0+gdARb7T7G4/ZonipkJ9Xq5Rnfnq7j5rl8fnP7+qWtjc3LA+xDP5e2Vpv1nQvrzdp2xzg9ObS3macEzppmOxSv1xdb9FjbY+lmbodn7CItgekDZ7vRzZi9Q+GKObjBinaOUaBBNo+YDX/VtMCMmnriORzsXPn7jA3xhpDGnK6lSS6ZtMWTBLu+2il2ox2P2MdYbJ8i2lF1S5d/InGcbHqzK7JlDC62+FPtibZzfoxv03V1yBsAjJmq/vpWdu+eHwBN6yecNoXnR0t6I85O7V+1Fpv21XMoinbAAmkpGnYDeNizKxe2zl8aYh+WsLO2vjPd3nC62TROTw7FTa5l286hZ7OZj8vW64ktnUhsyV5l2raPDtlKxyyaOp3dGK20dh7EC8FY7OFungO+Lsq2WGhP/sXRnKs4NMTFGgvJZns0CDcEsZTiYsWFa+s1kqDtRv84zng8xfIHaXeOsifGkL1AnBdU9iozlh+d0pl0LmN1dok99TVm6ZAfMTPGjP3TBQDjoaq/vqXce9FPmuhbcRDPTwIxErtDNirtLCNyI5J0adE4PX9sFK3FP6b9g9PDpa3VM1s7myvN2vbu5sr+C0GXz59pVmevcm9vNCt7lmZnbTb8xoXFCPPG/f6Xz5/ZD6P1i2ly7vbG2vb1C+vtoZxxFuwHe5/3L0FBLQrX64lNW2+6DeztF10d4hL8qRP7N8qVaOzb9JQOKfKTbrCiketuHimxWn6ykZT2HyS9fZKjLTbdS0af0SHdENJrR2uJjqZ7xrOpPMlMa2E0OuNJv81ugM54rikxZnsXiZvNSGCaXiPPHdZoZ0wrtJ0c49wB82NvvGiWQdIFAOOhqr8er3vX7oDzx9kfSOJX7azsPVr7eSDGKf7YiG7QxtTictKj2ldx1WkfMSq7Itq67G7O8e1t0JNLW6tntnb3HjT73nveeGG92XvQ8vMtwz9r3Fk7YONnv5tK5/ba9rbEOmpZEjenczpxcM+kpZUVY9NW3e4pftXOSqONDtnZjh5ouTKWEy3Njs2u2lDY4x/O5jFy7pwuTay4E7JJOHzsDebvsxRoNY2OijtBq5Rx4Tj3lZhYbZxsPNo4RkJKc5hdUdSzcw7F6abJxksP+TNgl0wcRKtsh9xmS9k/P9EDI3JtIQCwvFT118vk3u1GrSX9GvXRfgakPzaMDs6br3YTT093/mjRjkar1pLgj9xIyOA/dbT8aJVycfn8mZXzl65ev7C+urm10azvTK/ubq7sufGdtcVL7vsWveXPJeanSOf2Xr6d2KiOxlbx9PG0D1kIX2xpo9ai7e30WrPXa3dwrrfdzVhXdmpPSEWBaREaBT3MzSN+68l/t8R6OngS27NPFLOxQLvPYcZc1CftP1+O9lhbeLvFlljf9mjpmP5GsZs4o12sotQZgxvbXkuXM4diEuysZk90Lq3zIO3T7b2hTWef3i0/WpnSGTusFABGS1V/PVL3rt1nxTum+ANpmvxoMb7aDzp0cP7M6JCBaMn2cqKv2R8h/pC0hHh+5mX7GLlKY3AvZ89m76w1GxdmznzfeB8w6vuWft/tR+NcWJ9Hqp8rhV1Uei1jYnHF7BlbyFNH5x6wl+DcS+LjtFHcS86vnmUWdRDTns6YLY1zqGzqnHXROtsttTePVtm0lKKMKbJpMULyL6dzH3vDRGs3+hxmzP4+9mKz5RCLbhcuu7HF3WU89sSjbUtxf9rxz0cryk82eCNvnm+NKcSJtHn9pddW4c9zt7lKe5aWwMgPANx6VPXXS+bep/q90vmDVvyaHVDs6fkZYAxi/4w3MuCJR1ypNleHohh5sMP2z+X8Ie2f5cJ6s7Z1/sz8VffZK/DX3a+976w17T+eL3jtvShO+2d/thxiS7ffQuxCGIvKrjcbm7aZo5YoEu1rdkAj7UaG7bRnAyituDFO0bVmbxV/tGmoHTZPtFX8SbOD8W9Uu91IbP8+RpXtxHbeDIfZR1uOvRmM5LQnNQYxNoB/dxXFo1Ukmw2x3U67vSKtRmmKxLPE9UbpSiNMO6Td7HVp+bcT1SG9xkSeQUrzo2UmGz8A3AJU9ddjdO/27bV9i0x/jKWnaD+Asz/Isz9OPIFFPzLtc53fGgtJf2DbK533dNbFXlS6xrSzfwOIp9g/UDNsbzRNk/71+zT7d+97Xr3t51sffef8u3d/nFqGjV2RTUvRXhVLJu6lbBE9hzyxGetNH2e3vZ1Pe2NncyVWzVk7u+JaVEUXl2chh7x5jACi5Dgn0r7NJrM0sT37iEvQ8uyJ/xBiLuojLieK3ChxejQdx66mfx9qPbPxGGvMZqP0kJixzqNFW8ue1zOFHUx2fPG61sokds4mqqhD//yIm0cMuPRqAoDxU9Vfj9G9R3T4OW3/eIseaz8AjHntkIwfCdmfSUVnGfEYPy3SwZ0/Npw/lZ0/7TzTifKEJBN92rz88fLWZ87vef6maZqVjbXFJ3iL57pSZ3c2fnWI6ltao9I+aRgdfpUp6rykF7gzV8619NrtJQnvX80+m0fMgPNit/tkIx8qpX0KES15vnDxq9hnKYhqWno1pY9Feerbp9GI1l6IZ7rsie1tELWkKfXciNrJNKazx/Ff1/0T4lmL1i17cxg8P54y2VMAwPJS1V8vq3u3+xi3Rf8PtnRM+0dCtjFq137tMCKx11X6828otPT2nMj/O9athLgr0nwaG6lz3rQTtc051C8ct9IFnpbGjt++NitdudlU9C+QURoxOdHu9e/hnhkb8/2kc9rHifajwV9xbS8ZjeJdcag7pD1m/2vKk0Mxq2JKtUbxflU0jvNu1g1tq2iD+2PWNHh+tENLdPECQAeq+utRu3fxfip2M07xPLbnFWNIb/daHzFUZ7sYkpETLVS7w1AFyv507DZ4n0GWmvT3AOM3g6iPViP/iZ37FC3QE5u4r7SjnlDTfatdvNr2tk/UCmFXVgx48M0/n9pzfR3O5nHucE/+7W+7Le3wcV4U4wzeszrPWrJXvbF7jeJ23uRaPMa52rr61C5aZtpuZGnaur6M/Bjr1WYxevbZJ/Zis1F1iKRGfuz9AwC3KlX99ajdOwAAAAAAAMCyUNVf494BAAAAAAAABqCqv8a9AwAAAAAAAAxAVX+NewcAAAAAAAAYgKr+ejncu/gRIOnHhGQ/pMRoP5xPEBE/baXb7J5Toj7a56kcSS0GWWD23MNJdZN8ks0hbCd7Mztr0WEX9Y/THlA8WmmPDbXwnntVU7Zbadr75NDYb53rlT7on0//EuaBdahp+2jnaAfcYIPEM2yqPekdMFRjqPY2y+55T0hGtsXrrkPMnRcLQyXQWbjsLupfrON2M3feqIe9yfTZEkVXvX3Uf7MaZF3DbtShOMxIqmagqr8eo3tPN6t4+4gyLrak9xfj7mZfUZrS041u2kbpsGmcIYmz+6cbqhalORwkP0XtnqE8pe82i5EcsYKex54EOuMcthb2COLRAfeYfyHisH3SWJoo+1CUgXRPRmE7c1gaW596RUnulsx0mVq9tKvJvz2MDRaNbHcQA9C6OatjrMsZjz/P83ONtdtJttduBCwObjzOxuCfK51aTKARiXPjFa1d6+Cpe/tbo1u0wZYIcYFaAp19tApG42hboihmsY7pvGKLPYW/3T+XMz+atAx0K0fars3lr5HRJ1vxbNKca/FX2dPNSGO037L1cgaTrb5YaP8U3ebKdutGVX89UveulS190O6vtWgdSjd6tn86UTbsnvN2e3D4tSjNYc+wPeN7TjSuZzHOQS5+40TP/jEq1W2BpQXts0DtaNEe80fryYwxsqYamfEUSzwqbgMth8ZCjFz1rFdPjAXa3brtjaK57MfzJEcpEmuRrX40jifJHQohzpUOZRfFKIGx6+yd5hnTyKGzptldkS2WFrMx8rDXi1ZEO5N2hKMlXWB0cXXok3bQRugZc7p/jMtKbPFs9Wy7Z64+K9UaxcXaPZ2nZ/unO19UjaVFYaR7zJY4mjOBUWejMc1hh21gnJLdh0PN5bwuOlPVX4/avWdboqPpRi+tUFHxuu3XDjcCY17jorIv+EOuhb18Y9Jul5MWXueqifF7ytEzeOe6jBiMWhTlrf+6nIM4AzO2UHYVHbJtdx4kLX2CGfY69fcZpF7p0aJ8RmelC293E+cafKuLU6QTRaGmD5yRlPbvs8AoyGzMdm61XSd+qwVs1F3cG0YYUZnS2cUtlI3WmFeLrX+lPKOJqdOWP/9M6zgAACAASURBVGwYh0O6QG3LOfuIpdf2Rvptacx2ixGbJ35taqPROVd2Ins6LdtR/yj/2uBaNtJu7an9ARf1jLaKljfxaGkk2oZxjimGKmbVrnKH6qfl7jC+vxzpvD2nm1PVXy+He083TZrotNJae9G8zt1gX4dit/5bU7uQ7ENHUgt/JnvmJLvq0mGze0xMQp9bgLEPtVmiwLK1sMta1OLPXrZRe5Au3F/i7O4yVtTu0yHmzqW3M6kV3cjD/Kg/h3ZWB6lXewnZrehJWnuibLTaLNmaioUQy2E8Fs/VIs/OpQ3bbacZp2RjNpLTPqVRchvtDXsc/4qM8NKdY7REqxbr6wlYbNfiN9bl2R72aI1SRG1ppXvmyIkWGFVQ/JrtY3+b7pA+MaeFi+LM7kmj7trg6WjZudrbw57LbtcCiPrYsuMxVtczP2KQ/rWnU6TrsjPgjzlNUTpO06q1JwPairIrze6BDoN75jI2Sf8Z96jqr0fq3qOLUHwcJVpr8e+2dJzSrWDsP6NPt72SnUJcfulEQ9WifUqqbAexXv7kdE51tJG0sEtr162yWreiJWhHtdF67lLxRHEccdVGoxGYJ2YtFdOk0PbC7fS2BzQO9d/zUbTa42wOnVkdql7aVi/aaWmxxBxGYWgls9eV3UXZsmZTGs0rTmGvIpu9ovR6pnam0XNULJM2tS07h6X10tZb9DiNzS7KvHNaYiMz/rqLi9LCK9o2/rRX7WPs0nQ7OfvY33qS6VnOfBztsbhGuyX7bXZTGSNrKy3a2NlUZ8P2HE3zaafL3iTODNuK0pLdHvZ6tbVEaffsCs9+9oTtrFp2riKK5hIr0pOq/nqk7j1bMPGGEqXevv7t69O5J0o3TfbqbXcrGl8bJ7s6e66halGUwHRATwLbc3keONdunKuVIA3GE7Nn+dkcauM3narv2QP+EYzItSUbmRfX6MmzsRwtTi1vnpoag/Spabr27BSeHKZDifFnHxfNld0hUUqdSXNmwO7g3Bil4YkJEUtgFD0bXreQnOdq+8STIiNvxrCe3SIOqGW4NDlaUbSaZuuVjbx01Xb57CmyYfspynPVPtEC0zJ16CPmSkymUevsivylFMsnDpXdeNlNlZ0rjdzedUaHbDac6/KMbzTa0paplc84pT1dUf7TYDyRZGNuh+GfLouWW2fyo1wNOJczaUVU9dejdu/GHk0LYLS0B5wevELEavn3hGfTdBikz7WRXVG68GyQ/WthpCWdvagWdth2ozPP9i1g8OtfG8ce3z5LW7tWUzuk6FDp9VJU8dI9Zh8ST7eT5hnQSIJWPk+i/H0GvE5LE96nXtqVlY5p70B7D9gxF61LnFSMNlsLI0X2fjOCsdNoj+nJs7gQLSQ7RXaZPF/9VWtPJ46WrVe7m7HrPEkWl59mPrsZxMfGpM5sD4InnsPpIxZaPNHZx9j8nhG0cosxGxsyrb6xH5yd0xx2mEuMPFuv0sdRGsUNbGwMT/xiXYzCabN7phZza6xOC88TmDijscfE3PbBqIt21ChHn7nSbGubtjNV/fWo3btdTnGrGSPYV1d2rxjnGnsle31qA/p3j30n8gzuubx71sLT2K0WWtjaqv1rd1Zk8Otfi9C5gefL1Pa/WCZjmUZnZw61XeT/1rnH0m+LlqPlMDuXnSL/ZvAkWdxjA16n9hqHrZeYPee21EYTy9FhS3jWlcq/N4wUGVUzJvLkyp9MZ7aNmLMJt2thlM9Yr7152g+0yIvW66lUWjJj+dnsiWtJs+csrrj9tHOze6O0/yH0SUugbQZnH3szaCMY+0orU7bQWszGY2Nwu7NnrvYhI2ZnYNmk2aMZa7Tj9xRF7Gkn1lMaLZ50ezeKsjPah7RZPMmxOzjrImbSmcw+c2VT0Zmq/nqk7r29G7QbgVHI6KaTLY89mnPTZO9o2reeeMS5nJnxDFW7FkbwdjzOe6t/UYPk2XP373z9l2ZGDMNTqew29qTLs8zo5t7z4rIDK8qS3S0aNroWxNF63vQ9+1bLz1DXqXZ5Ordl6VyeHHo2jPa1Ri261St7ZaUbzJne0jtPUSntdaUbL73/GKnQat1h3xojO68Lz9HsZeJJZs9LyQ4g3ULZTHoueWPYMWPcHKK96u9jfysms+gKTa8psRx2scQ4swE4d6A2l+cCdyYhmx//1EU3EE8+tTGzw/a/WRWVqbQE4reD3xw67I2i9RbNFW2htpzLsanqr0fq3sVNo20je9tFOywtT/9NL8ZprMUTrT9FWqM2aeeJ+tSiXQLtWzuxHcIuPdQnz/Pl9L/+jQ1pK1sa54CecvRZkT2IM3LtW+dcdrdsBY1EVSq9XdkBr1PtinNmsijb4lz+DWzXQrxOs8vssy47nuhQetF5yuQpTTbyQfanXabOyfdUP3u6GGo7/+JX8TYoLkFblzPJRVuuz/4sOsVI5q2BVtnSPlNpzxipK02juNPEFm2K7IU24E3PnqvDBdL5XlF6or/E2onGOJ6rqcPNyoi5Q02du8K5HCf+i+vQ5ipKRRFV/fUY3bu9Y7KXYrTptdGM20o2gNJdboxjj5adQhtHux103pr9a2FcP3YtOmRJu7sVjWPnOZvV/necDme1sy3KkyVnvTpEmI3HM7i2x8QVGaNpkbRHy8bcs9aetYvr9ddUHFbLoZ0Hf8zOehXF7BxfHEdbl3GWJ4A+fdKQnFsrm0AjKv/SjEjaI2gx22HbmfcswU5sFIA4nT3O/FC7j7Z7nYUTg4zkHCeKJzuOs+6eeJaXqNx2Yu0+drd2hz7J1OpodGvP1SiXQM8dYp/ijNnOfxqzNrsxV7Y66UKy9fLkRxxHOzGdy7NYf5LtmLO1s5dmp8KZHCNR85ZKc0VT9F9gSlV/PWr3DgAAAAAAALAsVPXXuHcAAAAAAACAAajqr3HvAAAAAAAAAANQ1V/j3gEAAAAAAAAGoKq/HrV7Fz/JIOpgHJ2aH1yhfev87Aexm2ccf4fDzE9pSP4xtXJ4Ph/CjmeQT5XwD9VnOm1jRI+jT+/o//kZ2i7tPJc/mGFjrpEfe6OKGnCZNVJXKQZj4XYOS9dVaeHOUmZjaDrdvvovqmicqJv9bYe091mOdlmlQfrr1SGTdlRiS7cMiOf657InGion7dGMMYfazNm1ODdJ5/F7ZtLTuc+AVbd6vWH7Z9gZcM+hivZVdq5KSR6wLumhntfReJZsr3T+2H/LrXElVvXXI3XvUWbTB2K7XRJtEE/ZPC3ZcYwfS6VXRY38tLsZg2RX6unW7XRPCbqhDdUtMGMoo+6ePA+yLrvi4lYRt6i9h431Gmv3PK6dn27J1JKQXbidjaMim+QoWmMPOMeRO1w+v7l9/dLWxublA41nmo0LV+WWS1urzfrOhfVmbVsd1gjME79nXWL/tNziBsiO07lw/j2cDaYnxjjOsIeaNM2YmEM7LWIHsdyeuZx10TqIW0vsYwRjbJJo8Hqb4RA2m5h2o4jZWhSFnfaUzt1Z25ts5fyl6NDBO6Gz1tmQPMt0psWfEGfA2iFnMP7YmtwVYR0d6MdWdi3ZJWfXG53lGcpTzcMhDTWtWvrYuahBllnVX4/UvRuZTRu1vBubW9yXWh/xrG7jeJZzVPnJDujc684+Wi2cOdGSXJQ9TfbauxVLXKAWzyCzGBOlO0FrSTtkp9BOMYZy5nzw/BSlLt2l9u7tPHjVdRWtvV0yMfPZLHkOGaPt/QJ0Yav1a+v2RtM0TfvXoLhlZ219Z7q94f81SIzB7iOOJk5kzyjWPTuOMbI2SNro3G92MPa5nj3mnLHbLJ5J01QYyTHSa5QmfWDMZS/fk4q0T7bEWuaN+P3xaBnLDjJI3dM828s3jtqBGVnyJyRp2d1cmTm6PYO3GCG5E2oRdkijlgf/GsVt7NkAztw6R0i72ZF0GyEabZAfW86KGI/FZUYtUT61rKYjlO6oSrTD1tYrdo5asonqRlV/vXzu3XNU3Ihan2yFSstvT6rp8POTjU1bvj2jmPxo2PRoNj9iGNlFlWYyW/qecxnrih703x6eRGlzpcH485OOUFTQ7OOe+fHEIy45m0zn3rBPGaTuPRFTnbaXLl/sbJfj0tbqma2d+e+vF9abplnd3F68ZJG27P0CdGFd/qU2W8popWmc4lFxWLt86VA9xzGCNFpKd9pQe7J0n9Sb1E6Lp9bazjFKXDpX2mfABGY3njFpt9Jk1z5U3bXkR32MS6Ax5e1z+fyZlfOb67OWvbuZb6vsrM3vbJfN+95wv66I50YRijtBTGN2dmeN/Gs0BvSEp9fCu65Bfmxl58ou2bPBtPqmQ4mPj5x22P4kRJen70rsQlV/PUb3bt8K2wXQkhulXhzB6G8ULz3dvoSKrrpDzo+2iY0FesL2HMpWxAjDH6Qnk9qDbKo71MuoRTRXz01ir0uru5hecatojY20i7TCGSGJeR4wP0U5tGfRylc6rLicGuvyLDxdVLoZsstJU1GUGauz+RZEbUXavvJU2ai1kQ17C/nr3i1v6bWTjcSTpaH2pJ1nf72K5jKS056oNDnts+xyeOaKospukjSkNF1ibNHeSENNN482cs/qa4NUrbtzFm3PlC3t8vkzTXNma3d69fp0e2PvPfBpueUTF2+Y31lrVo03Y4u7NB05mzTxdG2T2LPY8diDiynVDjnXbndIvzUOZeeKKfyxld1s2SUb8TsLmk6dX+bh0o5TrF26nLSbJ1HdqOqvx+jexQIUHTXSrW1Hu/xGY7pLnNsoe53Uzo+2iT17N93u2XWVrjEbxjzaPleXsXA7ns4TOetuV8QZqrYPnTtB+9aeLj2laMM78+wvnH+0NMla2GJLt1mMApXWvX+fKKta9Y39IK7IU9mCzl1/DTKykd2l/sQaeZtKO1ZsscfxJNm5tdJ1iTW1kzNgnmvgzIlRHedZ7ZJpjz1ztQ9pifI8sMMWYyg6XWzJVsHO6iCbJOocPdYSm82zJxJ5ae0b1P5jo/SLB/tWf3r1eta9d6tLdiHRbtR2jrg3xDDsRns3Zvdq/7Vnd13Ruqxi9XPvRXnQNphRUC0zRWms3SfanMb1K67R2Mbahiyiqr9eMvduZzk95GmfV9r4Kl7J6e63x/FH67xIeuZHW4t2f7RX4VlmlKJspTwDGsnJHjVkr67DOGJu2+3iuUYe7NQ594M4e9rZnjRqtFeaxZ9nLT/ZiTrHpi3WOYIzMKNS9iCV+qSnGIPY28/etNq5Me5fg7Srsr2FspFHQxnL91w12kqNWnvGER+IK01PFDt0wHPp2bP46+Wfy96QWlaNSe0K2lF55jJqmq24llu7vuJ+y+ZKHNmzfE/Ag2wSexzP6rLn2gtcPFbcu7bNDpzoc+/+tGTLJC5crJ2xr+YdsjVqt3QrpWft/vw481A0SLwHtJZBl6PF1rRq10gFjRpLd44xwuB9isqnpcWTqG5U9ddjd+/ilsrWtWh/awU2yp/29IxjhyQu/DDzY4+jJUGcMTuIPaMYfDR4No3OHLZHM5aT/dYzixa5sXAj+f2r4GkRvzWqkEZuqzTPnvx4StO5ms7MeCZN82OUOFv3en3apcwOouVBrLURlVWROi9i+C8ccasbefNsA0/+jZCMYIxu4inOSomHOlxH3fr45/KX1WhJk2OkVJN/rnRqz13CeVXaE/UZOVsUTxJKN0npHjCOit2MsnqGmj1wv/ae5ET+u/dp0uIscbZM9tZNt4qdmWyW7CQ4i+Vfu3NL+MMoGHPQH1ueJXs2mHjta1dl9gK3y1Sjj7gKLTNaWnxXYheq+uvxuvfsXcBZMLvRX2D/5nBuFPGy8UQ7bH6ymzW9Yj13tOxdWxtcG6f908JZYs9VZ9ytOvxIcE5k5KSdkA73UOc9vS1tD4gd/Gn3Z8/Zsyg/znJoM2oy4slufn+7lm2j7sP28WfYTn56cWX3j73TZpT/3btYWf+W0GKLxhE7eAbPbgDPOMal6lysNoLdbizEwOjZoV7OWbSMade4c+3iDtd6ZudyLlPMkrMu9n5zbj/PyM6KZNfYE3sc55WSXal1Kyhx7wdbdjdXZn8wH3/m/NWO7t2ZWM/txbN7RYndsvuh2+q0uojxaAGnY3rWpRVLbXHvXs+SPRssCr7dmN0h2bA9dezZJw24STaquMbSRHWjqr8eo3tPs5zWRnxgpzu7Azzf2nPZ4/SMf/D82PteOz3d7vbaxfx0WHtRbrM59MTj3xUe0ntl+4Zip73z7cN5IRi3M3sz+GvRObGl+XHmqnN6tXii4vrL0X8tg2Nf+0YHMSH2okpzNb3ay71nl2yckl1+dEc1bqfGFdd5HE/kWpns1Q176flr4a9Xn0k9yRFji6736NrvXAhPRUqTY6fLuQFKc5WdKHviUDfAbsvPFqhgCd3d+3Xn/3tvcirNqn2xOG9KziuufShbLDFXpWsv3XLGrvAmdmj3nl2yZ4N5CuqvziFjrDddi5gKf6K6UdVfj9G9e7aXscO0dNu3DLuc4o1AO9feOtHRPjujZ348X6Oz7MWKadFunZ6bhVE+457lTJ2xlnZ1DHWuVOc+3XZIUR/72tGOpjnR9o/Rbue5Rn46DNgc3MMdtoGRwKlyvRwyWrnTdrGa9jjOBQ619nZWjfx7MhCVPh3WWKa2jYtSlI5j10i8MLNVyBZdXEi3unSrV2c8A3bIRhqzdtQ5l3iKsdmyy7QXbi/ZnrTbDTA7Y4fB/QtMj6bxGKEWJcE+5LxCO6zRmeFsWqLY0i2abkvj3mI3lpapdO2ee0u3KTonuUNl/UvusMHsm0y2RkdFtA9Lb7nDXoltqvrr8bp3LY/pxsruMK0qYgm1DZHOJU5kjGOfdST5Eft7Yo7Wa0QoZi+b52ztPFdmUTLrnZIuNr1ZtHeO1qc0PM+JYmx2H88U7XWJ28C/qGHzY4xgjxN1aD/wjGO3p+ktWtTgiMXSlm8sR+wT1dSZqMEXMp9FmyuNRFy1OI5zyeK3peOkW1EM0qiRfVTMSZ8aGad76jX4pNkAjJJlBzGyqs1lJCEqt3+ZdtjZDaBNWlQUz6YtrVeHqYuOanFq9SqKX0xIaVa7Ldk+UQvA3oR2o7i6aG+XxlO0duOy0kISO3jWNRT+tXuWnA1VTNGwK6pEWr5slto9SxPlp6q/Hq97BwAAAAAAAFgiqvpr3DsAAAAAAADAAFT117h3AAAAAAAAgAGo6q9x7wAAAAAAAAADUNVfj9q9p58o0HkQfx/78zP6x9NnBGecA84IAAAAAAAATqr662Pk3o3PkMx+nqQnHueHVRohaYOIgfmny+VwZ61Z3bx8sHF7YzFc67+MFk0KAAAAAABwrKjqr8fr3jWLW2oU2+MY7VlT2jke40Rx/DTUafLEQVPyvIY98nR7Y21948zW7rzl0tZq02xc2P/2wvoBA5+dAgAAAAAA4HhS1V8vh3sX2z0jtE2y7d7rxaNZ8Wni59P+ol13Ph0gBpB02N1cWd28vLO28OfpS/G7myvN2nbBAgEAAAAAAI4hVf31SN17armLXm2OhmqPmVp6u4M/Hi221O2LTyi04xHjFIfyL1/uf/n8mZXzl65ev7C+78+3N7KvtJfGAAAAAAAAcByo6q/H6N47O1VxKPE17Wniw/vH43HvkRU3XjYXnybQnggwnnSwI7y0tTp7z/z2RrO+c+CBu1LZzAMAAAAAABwHqvrrMbr3Pfz21R5EfKE7HX/a205rXlqcKHpghJdOqvXREqh33t1caYe5ceHq4tX4ohrZtQMAAAAAADgOVPXXS+bep5JhtkfImnOnw8zG43eqWkhikNqTBfaMrp4Hjfr+m+cL/u4d9w4AAAAAADCnqr9ebveefpsdx2jX7L0znlKn2uGVc/EU4wV8u8OlrdUDnnz/PfP+z5y3nz7AugMAAAAAwLGiqr8eu3u3TbLHHxa5d7GDMx7PK+F+52/7cOMZjeyzG/stu5srC4s+vXr9wKvuyv979wQJAAAAAABwPKnqr8fu3rVvO4yjvbRe+tq7Fk8H9243pmGUjpOuSFzaUDUCAAAAAAA4zlT118vh3vsYzmFfe7fjsd2y4aunLe9tD54dpzS3nbM64LMAAAAAAAAAtwBV/fV43TsAAAAAAADAElHVX+PeAQAAAAAAAAagqr/GvQMAAAAAAAAMQFV/jXsHAAAAAAAAGICq/hr3DgAAAAAAADAAVf31eN279nnm4n9Q6zZU5859BjTOHc9HuHuS7wnY7lB6uvZR/DVyOJ5aAAAAAADAslDVX4/avYv/C62/e08HtP/Tm3fey+fP7J+1tq327OLeL5/f3L5+aWtj83I03caFOIBZy6Wt1WZ958L6IpLS5GeLYtSoPYhnKOcInmRK0+2s7Y2+cv6SULJFDj3bAAAAAAAAQKOqvx6pexcNW+oGDROujWb4vaw/N2zk9OrOWrM6c9eXz59pVjcvyyHZBlj0jXu+/cJWy3xubzRN07Tde9yys7a+M93e6ODe0zyLyzezkUmmXUot22lZs+mdXt3dXJk9hbH3jMZihCSHxtYqzSEAAAAAABxDqvrrZXXvqXMz7FZk8NK5bPPs6rO90XaGey96a8FrQWrZuLS1emZrZ+5CL6w3TbO6ub143Tht2fPtF9YPvjhfknk7JP8g9lBGaezkG3vj4Ok7a/OcXDYz5nbvxl4CAAAAAIDjTFV/PUb3Ltrmqf6Sbx9jLA5on+IYfPY6fDSgcaL1vICG+c75zpk3cuLJgBF2dMj5rbOsanovnz+zeMN86/0RUsa0KuDeAQAAAADAQ1V/PUb3PlWMeql7N8xY24C1H3ics+Ehp1ev771V+8zWrhiS9sBjkmMGde+pefYcMloMA+ycKzuRK73bG43bvRckHwAAAAAAIKGqv76V3Xv6bReTbAaWnL6z1sys+1R/OiBdjv38gozbvWuDG7NoU8/7F0ebS6mnPS1rNr3+1979WeqzWAAAAAAAuIWp6q/H694byeJOE/+cPph2cu+ltlYY8/L5M82Bz3jXQoqWYAemUuGd8554Sk21YYCzfYye7vTKf/eeZkzbM+L4mdIAAAAAAMCxpKq/Hq97Tx+Lvr3IvaeHtBHsnsJZiXX3zzut/Np7z/yLh5zZHra9U1kXf8gQf+b81Y7u3c4PAAAAAAAcW6r662Vy7/ah7Ckel671EVva7Ze2ViPjLX7mvHON9owzjtS9O/NptHcYp9uTMs7/9649gZI+k4J1BwAAAAAAkar+euzu3XBlqSfXXrW2W7KdxTCch7SQpv3de02K1ism0G+APY89E/XMXjr4SGoBAAAAAADLQlV/PWr3rrm1qWTzDOPn8aKRCdTmEoPJDp4+zkaYHbwqTvcuJkE7t51bTyo87t2Z3mEzAAAAAAAAIFLVX4/UvQMAAAAAAAAsF1X9Ne4dAAAAAAAAYACq+mvcOwAAAAAAAMAAVPXXuHcAAAAAAACAAajqr4+Fey/6BDJP5z4DFn2cOxwV2c/es7s5O5Sern2A4oAzAgAAAABAZ6r66+Po3tP/XmZIHES2QNsb+yct/ul69oPTXYcun9/cvn5pa2Pz8oHG/P97b7Vc2lpt1ncurDdr2768dZw0/ufqved1/bf27Ho9JfbUIjrRHmreJzuUcwTPdhJbitYOAAAAAADdqOqvj5d7NwzS1OHPDROV+sapYu1s+yf6qz0re2GrZV9nzxS0vGu+ZWdtfWe6veF00Z0m3d1cmbnleRL6zSsOWGW9aaGzW8XaD77/Xe/pY0zk2WDGLLh3AAAAAIBhqeqvj4t7F317dFQzz84+C/adfOqUDO9kWKlLW6tntnbmPvbCetM0q5vbi+cLPC17PvbC+sEXq3U6TDq9urM2fzx/OqPXvNKAddYrFqKzvzWsuH9z2ttPDFUMPu/e03cxAAAAAABAOVX99XFx756jTtuWdd3t197b3YwTvc8LtCl85/ww2FNcPn9m8f72nbVm9cC77rtNZwxYYb3pZrB9tVZKbXCjp/at8xkfY4Npu6vzcxMAAAAAACBS1V/fyu7dMC1t66KZHGNY9dvL5880TbNvMkXfpc2bnShmhO59e6MZ1r3bAw663tQ8ew4ZLYZVds6Vnci5wexQAQAAAABgKKr661vZvc8Z0M80jj9XnvtMw7ylX22/J9DbveenKJ3U99p7wbyDvvZelGHt0Pys4nrlNpWnPXXvng1mq1vMAAAAAACQUtVf494tk+MZSuy291HnqaGKZhSP2o0LRujelT9T7zGvOWDN9xrYW8Xu7LHKzj5GT2MLNQfdux1q/1wBAAAAAMAeVf318XLvU9N6ZY2NOM7sgfQeb+e806P7u/eh3fvu5kpzZmt3mn5EfMd5zQEP3b23DxnF1c7t325MpHXGvQMAAAAAHBpV/fUxcu8el671EVui9ktbq/um2/q7d3tez4wzhnjtvTiZ5f/vvfe8Hf/fe0+y7l18YJ+rdev2/NHU7d5tDZs3AAAAAIDjTFV/fVzce2p7DMvkt+7ZQ8YL6X3dO9SkqOLiFlKtcnKK57FnIrGz/YzA/NsO/1oPAAAAAAAiqvrr4+Les4ciC9T+VrPWomXS5o0e255K7AOdMey0lmenexdH0M5t765ohGw3scW/wXKx7W5uqX/mAAAAAAAATqr662Ph3gEAAAAAAABqU9Vf494BAAAAAAAABqCqv8a9AwAAAAAAAAxAVX+NewcAAAAAAAAYgKr+GvcOAAAAAAAAMABV/TXuHQAAAAAAAGAAqvpr3DsAAAAAAADAAFT117h3AAAAAAAAgAGo6q9x7wAAAAAAAAADUNVf494BAAAAAAAABqCqv8a9AwAAAAAAAAxAVX+NewcAAAAAAAAYgKr++li496Zphu3cZ0Dj3KJhAQBKsW8y2lH/TazPLEXTFYXErRUAAAAOjar++ji696Zp2i2NKXEQ83fB3c2VZm1b7dnFvV8+v7l9/dLWxublA41nmo0LV7u3XNpabdZ3Lqwvos3QMYydtb1Urpy/lAw4HKsydgAAIABJREFUjmDixt7BuGY50jIdVTAd5x1ZJINvmC4Z8EfivndZ7r19S9Ruku1BPEM5R/DcRcWW7F0dAAAAYHCq+uvj5d6N3xSnjt9xjd8m51zaWm2a2a/O4q+M9u/B4i+ae7/lX9hq2YztjaZpmvbv8V1adtbWd6bbG07L0SmMxXMZe75iOrpgxMY+wfhnOaoyHVUwfeYdTySDb5jOGfBGkr2ztQ+lHaL7XmPeBu250imy06V90jvkNLmvGrMYGQAAAADoT1V/fVzce/u3Ou2oKH+f6dXr08vnz6xsrK0s3Ht7FrFF+7bNpa3VM1s789/UL6w3TbO6ub14Fa5by96v+BfWD764p9MhjOnVnbX548vjDEZq7BWMe5YjKtPRBdN93vFEUmHDdM2AOxKPdx3E3xpWPG3X7sn2XVcMVQxeW1Hn1QEAAAB4qOqvj4t79xx1/oanu+7dzZXVzcuLF8SiAQ27nn9eIKX3O+eHwZ7i8vkzi3cm76w1q5m3Ch9+MHaE3WIoneWQy3RUwfSfdwyRDL5hOmfAHUn2zpbeA+1u4rC2US/91vlEp3Ff1W6quHcAAACoSlV/fSu7d+O3t/bvcNpve8aw4reXtlbPbO22384q/gKqzZudKGYp3Pv2RjMe9y4GY0fYgQ6zHHKZjiqY/vOOIZLBN0znDLgjsZ2wdtQ4ZLQYVtk5V3Yi533VDtVIAgAAAEAfqvrrW9m9z+nzi53YWfj1cfE62AH3rv0Wm361f/EVqODeu/wWW+2190MKxvcCZkEw9V9775uZowqm8mvvhxTJ4BumcwaGe+09e3S+nOLbVKe57BbnfdVWOnjnhQAAAAC0qeqvce/Wb3ueofYe7H1YXVtntna1X5rbv2VmA1NZCveu/IHxmIIxI+wSTPksh52Zowqm97yjiGTwDdM5A65IpiUfsWHfIbPDeqyyp4/Rc6rfOdtH7SWLIxTXCwAAAECiqr8+Xu59av4Omv0d1/c7X+ad89po9m+0AnXeOT+05djdXGnObO1O0w/3HkswZoRdgimf5bDLdFTB9J53FJEMvmE6Z8AVSdZ1Fx0y7mnauf3bPd7biNPzLdYdAAAAhqKqvz5G7t3j0o3XYdy/a3Z0746RD1Ln1cvi9OanKPnH2kcTjB5hx2CG/H/vdTJzVMEM9v/ejzSSwTdM5wx0jKTUUU+le2M3995hnG7u3VZxdQAAAAB8VPXXx8W9Gy+2eF6H8fxSq82r/b7Y170DAJiUuvSiG51457Stculjz0RiZ/sZAW6tAAAAUI+q/vq4uPfsoeh3wfa3mrXOvoZj/Hqa/W2SF4gAoA/+u5PnlPQO5rTE4vOkxuke925E1SEVAAAAAANS1V8fC/cOAAAAAAAAUJuq/hr3DgAAAAAAADAAVf11XfeOEEIIIYQQQgih/sK9I4QQQgghhBBCYxfuHSGEEEIIIYQQGrtw7wghhBBCCCGE0NiFe0cIIYQQQgghhMYu3DtCCCGEEEIIITR24d4RQgghhBBCCKGxC/eOEEIIIYQQQgiNXbh3hBBCCCGEEEJo7MK9I4QQQgghhBBCYxfuHSGEEEIIIYQQGrtw7wghhBBCCCGE0NiFe0cIIYQQQgghhMYu3DtCCCGEEEIIITR24d4RQgghhBBCCKGxC/eOEEIIIYQQQgiNXdXd+wfvC5NJmEzCbu2ZEEIIIYQQQgihW1THy72/Og1rj4SXjzoMhBBCCCGEEEKoSMfIvX/1S+EfnAh33Yd7RwghhBBCCCG0ZDou7v3lb4e7JmEywb0jhBBCCCGEEFo+HYF7n7d8+fnwxSfDT54Kk0m441T47SfDqzcWJz51dtHtk4+EN5wMk0m486fCp/4o3GyNf/HJWbennhHO3Wuc92lz5O8FQAghhBBCCCGEnDpK93733bGjXnl8ceLcgd9zT9ztw08uDDzuHSGEEEIIIYTQLa+jdO8nT4evvBRCCH/8RLhtEiaT8Po3hR/sd5s78NedCs/8ebgZwjf+U/gHJ8JkEm47Ef7bK7NuHvceeOc8QgghhBBCCKFl1lG697bfbpKXxOcO/NFPL7pt/YtZ47mtWQvuHSGEEEIIIYTQLa+jdO8Xv73o9tCbVPf+H59fdNt9Ztb4nkdnLbh3hBBCCCGEEEK3vMbi3tNucwfe7jZ3783ZWQvuHSGEEEIIIYTQLa8lcO9/+PVFt86vvf/dX4a7ce8IIYQQQgghhJZTS+De2x9E/4ePzRof/8KsZe7eP/ikMFr6p/W4d4QQQgghhBBCS6clcO+3nQiffy7cDOGF58Kbk8+c/+YXZt3uui+8MA03b4TPPzb7BHvRvb/uVHjpWnj1b8NrtVeOEEIIIYQQQggNpCVw7/ffH/+r9rYn//Er4RdPxx1OnxZ6zqfg/70jhBBCCCGEEFouLYF7//Lz4YtPhjtPhskk/OS94YvPhZsHp/jhd8JDD4TbJ2EyCfc+EP74z4S/e9/r9j/9/Oxl+TvvDv/3DwJCCCGEEEIIIbQUqu7eO0v8zHmEEEIIIYQQQugYCveOEEIIIYQQQgiNXbh3hBBCCCGEEEJo7MK9I4QQQgghhBBCY9d43TtCCCGEEEIIIYT2hHtHCCGEEEIIIYTGLtw7QgghhBBCCCE0duHeEUIIIYQQQgihsQv3jhBCCCGEEEIIjV113fv06nUAAAAAAACA40BVf417BwAAAAAAABiAqv56adx70zSVTml3E0/xjBP10cbpsAoAAAAAAABYCqr662V377ubK02slfOXDp4SHY/GTL9qUyczybbfGMpo93Npa/XM1o6x8DIunz/TbFxYtOysCaP5Gi+fP9MtBgAAAAAAgOWnqr8etXtP3bJmnhMLqr6inppn/2vv4gvsUTzZ0Yx2F5FDThZexvZG0zTNYoTdzZVmbfv69Or1S1urzfpOYePeMwu7PesOAAAAAACwjFT116N273PydvegiY38tuioxecC/N+2nz5IpxPNfMFydC6szzyzuPAkJwc7J0M1zermdnuEnbX548XI/sZWe8+nFQAAAAAAAJaNqv56Cdx7/oX3q4J7j9y1dqJhwtt9jA6GS9eWU9T/IC3PLC18evX64q8J5i/Rz15gX0j1/wde2N9Za1Y3L5c0Xr0+TZ9fAAAAAAAAOB5U9ddjd++CUd9vP9AivdJrmO3249TAG+49fSLAfmYhDT7r3rUlz5YZ/WF5tPDtjaZlpF20R9jeaFJP7m+8en3Km+cBAAAAAOC4UtVfj9q9G/Y4695tx54+SL+2T4nabU9uDGW0a+Ed4IBnlhcuvPZuM/Rr77h3AAAAAAA4nlT116N273t0eO3dfnncGCd16e1T7NfY00m18T3rkt179rX3+FCztl3yzvkB/u4d9w4AAAAAAMeUqv56Ody7qAPdzM9IEz2zOJptuVPHPj3o8LWvdiTiepVseP7uvZADI+xurjR73jv6eHlf4/Upf/cOAAAAAADHlar+ejnce75R+bv31EJrTt6YTnPjfidvj1xEwWfOOxnw/73PGvnMeQAAAAAAOI5U9de3intPjmYdu9FTfME88ufGidknCPwLEUjfPD8m2m+bv7COewcAAAAAgGNEVX+9lO7dfG+5cHqqaBDbdac9tcfROOKL/54F2oz3D8sPPLOwu7m1U3c6AAAAAACAMVHVXy+BewcAAAAAAAAYP1X9Ne4dAAAAAAAAYACq+mvcOwAAAAAAAMAAVPXXuHcAAAAAAACAAajqr5fAvXs+1M35wW/2/2/zjzNg5IczyCHPmM2zsw8AAAAAAMASUdVfL4d719TuI3aOOmj/1y07jtGezpWO1mft9rpqYPhte+1iu9jNUwuR+PP2j/a/ysez76ztrbP9L/3iPrubK3udVjcv73cY8b8ABAAAAAAAP1X99djdu8fXpS5dO9c+Oj3olj3tYgdbw659cJx22s5D27d3roVAZHS3N5qmaY7Kvcez726uNGvb16dXr1/aWm3WZ/8t78L66tr66l779Or1C+uzPtPtjbnJH++/AAQAAAAAgBKq+utRu/f0xVvthdypZDuLXhM2vrVdqNbe03tnZ6yB31EbeUgzWVqLPZe+uT5rEazv1esX1pumWd3cVl57v3z+TOtE4ag0vvd0efadtfnjxevtO2vNxoXL58/MzHyrzwG0dgAAAAAAWCaq+utRu/c9RB+busHo23Zj+5AxptiuddCCFMMQ4/GvfZChOuTZmMU+FEWYds7U4vL5M00zezl68Rq1ZHG196XPX6KfvUK+0Nq2Nr77dHH2A+8L2Fnbe2P89kazvjO9uru5snHhavSswf47569enx58YgIAAAAAAJaUqv56mdz7tMR1i49T02iMI7plj3vX3HWp5RbHqeTbjbx58p/mWfzqrUXkipuF9Y3/Przdc3sjssQq4vj+07XZE/c+9+QX1pszW7sHXtI/uBzePA8AAAAAcAtQ1V+P2r2nFjrrqG2rabvKactSGk8TeILJ9smuSwxPa0kbS3NoTyGmVFu7lr1GSqy8WM1d2+796nXhxXMRcXz/6do46WvvaX+lD+4dAAAAAOAWoKq/HrV7n/pebI9Mr2ZNxW/TcdJhbXtsh51tLB2n1L33ybm/HFrStBzatej42nvc3qxtG++cF92773R5dvHv3iN21nDvAAAAAAC3LlX99dK4d+Nxtr/oIWPHKJ2Snc4I27avHZZvRDIS9+4MNV8L2V17/u7dR9a9dxjn6u7myuxv6dufOR+x+Pv2g09G8HfvAAAAAAC3AFX99RK4d+druakb15y82KHd4hyqqEVrzC6/21w9c5495OyjFSuTVcVdCxZ3RO79uvz/3mP2+8Qn8pnzAAAAAABLT1V/PXb3ruF5kTxymGLPtE/7q/YqsRGP0a2Se6+XWzvtPftkayEgvnl++eFt8wAAAAAAtwZV/fWSuff0hVzxaOS6U/utvRSsGXWPvcy+Pt/TvdtrHzbJztyKefb0ydZC4xY0urfoUxIAAAAAAMeQqv56ydw7AAAAAAAAwDip6q9x7wAAAAAAAAADUNVf13XvCCGEEEIIIYQQ6i/cO0IIIYQQQgghNHbh3hFCCCGEEEIIobEL944QQgghhBBCCI1duHeEEEIIIYQQQmjswr0jhBBCCCGEEEJjF+4dIYQQQgghhBAau3DvCCGEEEIIIYTQ2IV7RwghhBBCCCGExi7cO0IIIYQQQgghNHbh3hFCCCGEEEIIobEL944QQgghhBBCCI1duHeEEEIIIYQQQmjswr0jhBBCCCGEEEJjF+4dIYQQQgghhBAau3DvCCGEEEIIIYTQ2IV7RwghhBBCCCGExq7Dc+9f+3L4lQfCG06GySRMJuHOu8PDvxm+9f1Dmx8hhBBCCCGEEFpWHYZ7/9HL4f0/OzPtKb/xePhR15Fv3gh/8Hh49ttDRpvqykvhf/lo3SkQQgghhBBCCCFD1d37zRvhw/er1n2PDz8ZbpaPfOWl8Ev3hskkXKzm3m/eCF98MpychOZsrSkQQgghhBBCCKGsqrv3i08uXPrKufC9v521f+9b4X9+7+LQxReLR/7gffvnVnPvu8/MpsC9I4QQQgghhBA6QlV37+85NTPAv/u0cPR3V2ZH3/PoorGZhMkk3HVfeHm/5eVvh7tajfNv2zz1TAgtS/+tl8Nv/2q440SYTMJP/3z44z87MO9TZwXnHz0dMO8zpx0SQgghhBBCCCF0aKrr3v/m+XDnJEwm4Y33hKnUYfqN8Ma9D7F7W/ib/cZB3Ps998gd9oR7RwghhBBCCCG0RKrr3ufvPG+/tB7pwROzPrv7LVn3vifxnfPzxjfeE77x/XDzRvhPnw4nk2cQPO498M55hBBCCCGEEELj0CG59w8+qfaZe+Zh3fvWny4aH33HrPH3vjJrwb0jhBBCCCGEEFoiHZJ7f/BDap9mUsW9v3Rj0Tj/5LxzW7MW3DtCCCGEEEIIoSVSXff+g6+H15t/9z7vUPR373uy3fvuom3h3udvAcC9I4QQQgghhBBaItV17zdvhHfuf+Z8+k/d2/8Kvugz5/f0yP2WA//mK4vGzq+9f/diuA33jhBCCCGEEELoqFX9P8Y9/fjiM9v/6SPh+e+GmyHcvBG+863wT392caj9/97T99L/xTMzF91277YD/50vLhoff9+s8Q+/Hp87/yD6mzfC20/EA86fNcC9I4QQQgghhBA6QlV37+0X2DWil+UfetOsff3fhNdCuPJSePtp4X+2zR34py6G166FV6+F0HLvJ0+Hr7wUQghf+X3hM+f/8LFZt59/X7hyLbx2LXz8/a2nEhL3/pZ3hB/eCP/f38ZvH0AIIYQQQgghhA5B1d17COFHL4ffeFC17r/xePjRwf7/5V/NXmmf89+dDq9L3Pv8/fDtV9Hn7v3+g08Z3HYifPn5xRQ/fDG8+UTc4SdOxe69/YL8hP/3jhBCCCGEEELoiHQY7n1PX/tyePjd4c59h3zn3eHh3wxfe0nu/B+eDD95Kkwm4Y5T4ey58NLzwt+937wRPvlIuOPErNvjnwuh5d6/fS387/tH730gfDWZ6C/+LPzCveG2SbjtRHj7u8PXviN/DN5f/Fl48Kdm7W95W/j+0GlBCCGEEEIIIYSyOjz3fjgSP3MeIYQQQgghhBBaauHeEUIIIYQQQgihsQv3jhBCCCGEEEIIjV24d4QQQgghhBBCaOy61dw7QgghhBBCCCF06wn3jhBCCCGEEEIIjV24d4QQQgghhBBCaOzCvSOEEEIIIYQQQmMX7h0hhBBCCCGEEBq76rr36dXrAAAAAAAAAMeBqv4a9w4AAAAAAAAwAFX99ZK596Zp2o81aad4hvXP3m2covCcgfUZoUO6huXwZxwh6dYiLQAAAAAAS0dVf73E7t3TPvWZ/Plju0P6VQvDM5c2lN25W7r8z26kszifJRmyppfPn2k2Lixadtb25ls5f2msjZe2VqPkrG1b20BMQr0kAwAAAADAIVDVX4/RvfutZud2rY/22HN0etAtp+3RojzzZmd0rivbx/CNg8RTUNPtjaZpmoV7391cada2r0/3HPL6zlgbDy5h39VHafQkId0eAAAAAACwFFT112N0723E1yS1bp5zNWtqOGrxXP+39nTtU9K1aI+debPPys6oLd8oRM+aXlhvmmZ1c7v92vvO2vzx4jX5ETbO2VlrVjcvq0lOy23snG4ZBgAAAACAI6Gqv14O9659m22f5jxq6q4172SYcGOudNKsJRvQLYuGMDWKdibFvHkW0r2mbUt8+fyZxVvW943xCBv3g49ejU/LJ24De5cCAAAAAMBSUNVfj9G9GwZGs9mG0RUfl3qntt2NWpzhaTFrKzUa/Wm0rbgdczSOHfwgNV3Qdu+td6EvrPIIG+Vv86+9p/vKyHBp2gEAAAAA4DCp6q/H6N6n0ruLowdi/7TRVnqu+Fj0XakHm7bMlRGwNojfvXvWpY2Zd86OumiH7NEKarq8r70fMPZxscQ8tPsYuzGTMQAAAAAAGAFV/fVyuHexJe1vtBtGKPJOqd0yRkjHSYeNhrKdtmfS0jRqLZ61pwux1zVMTS8v69+9X1hvzmzt2jsw3TnahtSqX7oNAAAAAADgcKjqr0fq3qc5t2x3Ftu1x9n+mq3VgpwmVjayx9Hp6Vc7CZ1zaI9g58cI0h+et6YHLPHu5srMEkef+j6yxr32A2+b17ZEti5GhrHuAAAAAACjpaq/Hql713xdB/de9Lpx1u13s7ilTl6booZ7z65dXH7R8wLFNV3C//e+3xj/0bu237TkGLsUAAAAAABGTlV/PWr3PnXb18621rBV6dSiCU+HFZ2Y1idtt9VtmdoC02+jiez8FMVTWtNbjGj5RhLEDgAAAAAAMH6q+usxunfRLmr2tcjW2p01txy5WWeEhulNx3EuoY97zyZKC7hPAN1qekti7Jz20T7PjwAAAAAAwNFS1V+P0b0DAAAAAAAALB1V/TXuHQAAAAAAAGAAqvrruu4dIYQQQgghhBBC/YV7RwghhBBCCCGExi7cO0IIIYQQQgghNHbh3hFCCCGEEEIIobEL944QQgghhBBCCI1duHeEEEIIIYQQQmjswr0jhBBCCCGEEEJjF+4dIYQQQgghhBAau3DvCCGEEEIIIYTQ2IV7RwghhBBCCCGExi7cO0IIIYQQQgghNHbh3hFCCCGEEEIIobEL944QQgghhBBCCI1duHeEEEIIIYQQQmjswr0jhBBCCCGEEEJjF+4dIYQQQgghhBAauw7Dvd+8EZ7+dPiHbwm3T8JkEm47Ed76QPjcl8NrhzB3oXafCZNJmExCc3aYcT745ECRIYQQQgghhBA6xqru3n/0cvjHd8+sbMQvnA0/qj19oW5J937zRviDx8Oz3z7qOBBCCCGEEEIIdVV19/57j8rWfY9zW7XnL9Ot596vvBR+6d4wmYSLuHeEEEIIIYQQWlpVd+/vOTXzsR///fDqtRBCuPZK+Pj7Z4133x/+rnYEJbr13PsH75tFgntHCCGEEEIIoeVVdffe7L/Mvttq/PEr4edOCO1XXgpn3x3ecHJ26A2nw9lz4cq1RYc9L3rXfeG70/DYr8963vlT4fcuhpshfPVLofmpMJmE20+Ghx45cGLbTn/tj8K9p2fdzp4LP7whdGu7972/2987ZTIJ9z4Qnn4u3DRXnbr39shXXgoPPTD7FIB7Hwhffak4zpe/He5K4oyCn/dp89QzZtwIIYQQQgghhEap6u790XcsTO9//lq4dkPteeX58OYTsducTMKb7w8/3O+z595fdyr8xMm42zv+h3DbwZaffd/i7+rnzvYt98Td3nx/uHIj7jZ3xTdvhLX3ClF9+EnLwBvu/eTpcOrgMm87Ef7bK2Vx4t4RQgghhBBC6Fipunt/4WI4edBAvuVt4bc+Hv78hdj9nnvnzNx+/fshhPDatfDIvvP/j8/P+szfB/7Ge8I3vh9u3gj/29nFyL/2WHj1RrjyUviZfXv8J385O3HubCeT8FufDNduhL/9fnjfvbOW3/li3G3uip/bmrnof/5EuHbjwNv+n/6GumrDvc/jfHUafmH/9fzHv1AWp8e9RxnjnfMIIYQQQgghtLw6jP8Y962L4SeTl8onk/CTPxu+9h2h//f/Ivz7fxsefvfsveXtV4znXnTeMresr39T+MH+CI+/L7asi9e03xH+fr/bd/80vG4SJpPw0+8MVw92mxvglXviwf/m+XDnJEwm4T2Pqks23Ptd9y3eSnDxSbWbHSfuHSGEEEIIIYSOlQ7DvYcQbt4If/5fw2/9WnjL6YV733ul/YVXFn0+dS7cKfn81L2ntvyt7ws/3p/uqf0X5D91Me529okDge39Wf7rToW/PthtzwD/+JXw1iSYOcZH7tl/9z7XN7+gdrPjxL0jhBBCCCGE0LHSIbn3tq69Ev7k34f79/8J/Pyfxu29c34yCXecCo98PPzXr4Xf3TfhHvfetqxPJSdqHwIffaie50/H59x1X3hZWaPTvRvd7Dhx7wghhBBCCCF0rFTXvc/fGf7+x+K/cn/pj2aHHvxQCCH88MWZHb3rvsVns6UmvL97f+ixA2HYr71f/UH46ZxRF9Xfvdtx+t37I/fj3hFCCCGEEEJo6VXXvf/g6+H1+y8a/8snw5VXQgjh5o3wnW+Fd+y/9r73FnHReT70puHd+xvvCdMkvPm77tPR5jF8c/8d/unb3VP1d+92nHP33n5aYf5ciZgK3DtCCCGEEEIILa+qv3N+/n54jYsvhtB67f22E+FPXgqvXQufe2zxL9MGdO+T1ke+/9r+69LGZ84//fis5e3vD1euhVen4Z/cM4vzue+pq+7v3u0423+Q/38+F26G8MJzi/+3J6biUxfDa9fCq9fclUMIIYQQQgghNBpVd+8/ejn847sXjjRibWvxjvrU55/c/wS7+T9U6+/e//v74/9g9wtnhX8L3/5/7x++X4j8E//OWnV/927HGUL41IfikE6fFqaYvyAfJQQhhBBCCCGE0BLpMD617uaN8PSnwwNvC3fsvzh8593h4d8MX3sp7vbJR8IbTobJJLzhdHjs0+H//d7sz85/9n0z4zrIp9a98Fx48KfCZBLuOBV++8nw6o3FieJoe/G/9e7ZewHe8rbwxefiP+OPNMin1hlxiun6lhL8Jx+ZZf6OU+Hxz5lxI4QQQgghhBAapY7gM+ePRNpnuY9NyxInQgghhBBCCKHDFO59XFqWOBFCCCGEEEIIHaZw7+PSssSJEEIIIYQQQugwhXsfl5YlToQQQgghhBBCh6nj4t4RQgghhBBCCKHlFe4dIYQQQgghhBAau3DvCCGEEEIIIYTQ2IV7RwghhBBCCCGExi7cO0IIIYQQQgghNHbVde/Tq9c78NSzQaTbaAAAAAAAAACHQFV/jXsHAAAAAAAAGICq/hr3DgAAAAAAADAAVf31SN37x574TLOvDzzxIu4dAAAAAAAARk5Vfz1G9/6Jz1585y9/9BPPhqeeDZ/47MUHm3d95LNXcO8AAAAAAAAwZqr665G69webhz82e8P8lYd++Z/h3gEAAAAAAGDkVPXXY3Tv7b91/8RnL/6PZz/DO+cBAAAAAABg5FT11+N173t/+v7g/lvoce8AAAAAAAAwZqr66/G696cWf/c+exf9kVcCAAAAAAAAQKOqvx67e3/q2fCRcx996NxF3DsAAAAAAACMmar+egnc+8ee+My7zn4G9w4AAAAAAABjpqq/HqN7/9gTn2kWnznPa+8AAAAAAACwBFT11yN1760Pq3vxXfy/dwAAAAAAABg9Vf31GN37/APnm6Zp9q077h0AAAAAAADGTFV/PVL3LnLklQAAAAAAAADQqOqvce8AAAAAAAAAA1DVX+PeAQAAAAAAAAagqr/GvQMAAAAAAAAMQFV/jXsHAAAAAAAAGICq/hr3DgAAAAAAADAAVf017h0AAAAAAABgAKr661G794898fldYvb6AAAP10lEQVT5P3vHvQMAAAAAAMCYqeqvR+reP3Luo03TNM27cO8AAAAAAACwFFT11yN17089G5569spDv/zPcO8AAAAAAACwFFT117h3AAAAAAAAgAGo6q9x7wAAAAAAAAADUNVf494BAAAAAAAABqCqv8a9AwAAAAAAAAxAVX+NewcAAAAAAAAYgKr+GvcOAAAAAAAAMABV/fXI3fu7PvDEi7h3AAAAAAAAGD9V/fVI3ftHzn20Wejhj+HeAQAAAAAAYNxU9dcjde8iR14JAAAAAAAAAI2q/hr3DgAAAAAAADAAVf017h0AAAAAAABgAKr6a9w7AAAAAAAAwABU9de4dwAAAAAAAIABqOqvce8AAAAAAAAAA1DVX+PeAQAAAAAAAAagqr8eu3v/yLmPPnTuIu4dAAAAAAAARk5Vfz1q9/6Jz158sGlw7wAAAAAAADB+qvrrMbv3Kytnn1g5+zDuHQAAAAAAAMZPVX89Xvf+kXNPfOSzVz6AewcAAAAAAIBloKq/Hq17f/HsuYtPPRtw7wAAAAAAALAUVPXXI3XvHzi79rFnA+4dAAAAAAAAloWq/nqM7v1jT3zmA0+8+BTuHQAAAAAAAJaHqv56hO79rx/65Xc1sd71kc9eOfJKAAAAAAAAAGhU9dcjdO8H/t87r70DAAAAAADAUlDVX+PeAQAAAAAAAAagqr8er3v/xGcvPrh45/zDH8O9AwAAAAAAwIip6q/H695TjrwSAAAAAAAAABpV/TXuHQAAAAAAAGAAqvpr3DsAAAAAAADAAFT117h3AAAAAAAAgAGo6q9x7wAAAAAAAAADUNVf494BAAAAAAAABqCqv8a9AwAAAAAAAAxAVX89Uvf+gbMPNy194IkXce8AAAAAAAAwZqr665G69w+f+9QneO0dAAAAAAAAloeq/nqc7v3K2XOf553zAAAAAAAAsERU9de4dwD4/9u7/9C47/uO418wxAQFGqU49R9u49QMs/zAY1+TGTv7I1W6ufvDIFJUFnaYpWUuTMlABAQW2CAqmDKE/3AmjFizbFlZGhzIaA+UsQ5jikspxQTHTpMQ5gUfs7PNDkSEWQje++Puvjqd7lQ5uY/ve87jyeOPRD5J9/X99fL3vt8DAAB6IOm+Lu96Ly59H52oWu8AAACUXNJ9Xc71fnGkeae61v/u+ysBAAAA3STd1+Vc72veMD8+MTlSmbfeAQAAKLOk+3oA1vvUzLz1DgAAQMkl3ddlXO9TM/N5PjbVcu69ful7318JAAAA6Cbpvi7peq+fbG9e9z4yvlCz3gEAACizpPu6jOu9/m75vFnz9nXWOwAAAOWVdF+XdL131PdXAgAAALpJuq+tdwAAAOiBpPvaegcAAIAeSLqvrXcAAADogaT7Ou16lyRJkiRJnz/rXZIkSZKksme9S5IkSZJU9qx3SZIkSZLKnvUuSZIkSVLZs94lSZIkSSp71rskSZIkSWXPepckSZIkqezdjvW+shynX4xHdsZdWWRZbNkaD+2Ll38SN2/D777F3n0jsiyyLPJKb37gjSvxwkTs2hFbssiyuGsoHtkXf/vjWFruzc+XJEmSJH0RSr7eP7ka39jRmMRtHq/EJ6l//S3W2/W+eCqGt3Y+9uEdcfa9z/6Ta5fi+5M9eIYbtLIc/3Q8Ft9O+1skSZIkSZsp+Xr/4XOd52vdxKnUv//W6uF6P/9GDHU/8CyLoW1x/uot/9iV5Xh1NoZ69+6AjtUuxR/vjiyLqvUuSZIkSSUo+Xr/5nBjrB57KW4sRUQsXY9jTzW+uGNv/HfqZ3Ar9Wq9f3o9DjQP/Cu747V/a7xVful6/PSl+ErzhPyBSnzap2e4cc/safwW612SJEmSylDy9Z43TzW/2/LFT6/H723t8PXapag8GfcONf7o3m1RmYja0uoD6qty+554/0oc/bPGI+9/MH5YjZWIsz+O/MHG5eWjR9Z8YzF6n5mNc6/H7m2Nh1Um4tpyh4e1buP6dfv1b8my2L0vTp+JlQ2P+uypxoO374naukvca2/F9uZfy9kPG1+cq3QYzG0runhMYfueuLrpo7v6duP3th5d2yEXj2k198aGRytJkiRJSlzy9f7cgdXR+9NzG92trfZWPNDpKvEH9sa15mPqa/bu4fjyUPvDDvxh485whUcPrV5XX2zUnbvaH/bA3tWBvX69ryzH83/U4Vl9b3ajAf/CnzYe9oNXOz/gB813H7zweuMrPVnvGx+d9S5JkiRJA1ry9X6h2n75986H49lj8csL7et34onG1eC/uBwRcXMpjjSX/7+81XhMsWbv2xW/uhwry/E3LYP26aNxYzlql+J3mv8K8OZvGt9YbNQsi2dPxNJyfHQ5Du1u39jr1/uZU409/OczsbS85m3/p3/V9aiL51mcWm/rzbnVs+X1NrPeOz7DzR/dZtZ7t98rSZIkSepjt+MT485X46vrTpVnWXz10TjX6b7rl9+J1/4+xp5sfMJc67nfYlUWXynG55e+FsVSPn6o6+jdeSD+t/mw9/817s4iy+LrT8THax9WTNnv7Gr/4f/1VtyfRZbFN5/resjF83y3ywNa3+teryfrfeOjs94lSZIkaUC7Hes9IlaW45c/i2efjp3Nq8frhrbFheurjzk5Efd32vnr1/v6NfvQodU7wBVL+GS1/WGVmTVPrH5Z/t3D8R9rH1afsp9ej4fWPZnCBrfcK55ncfK/repskvW+8dFZ75IkSZI0oN2m9d7a0vV487XY2/wQ+OJD4+rvnM+yuGc4jhyLn52Lv24O2s2s99bxObfuG9ef667XdlO9zVwEXqhfc96x4uR/t+veiwfc0nXv3Y53k0dnvUuSJEnSgJZ2vRdnmJ862n6V+6XXG3+0/7sREdcuNoZl603a14/wz7/eR4+ueRobn3v/+MP4+m8b6h379xdX31yw/kPdWz8K/pbuOR8R71cb1+F3XOAbH93m1/uRvda7JEmSJJWotOv9w1/El5oz9S9no3Y9ImJlOd47Hwea597rb/buuCFHv9b79X7frriy7ukV77pf/9OK5/Dr5jv8f/1K5xPdrbV+JN7wjvi7nzQ+6/7GR/Gj2Rju9Hnv65/zynI8trX9eDde4BsfXfG9rf8YUfwLS8e/QOtdkiRJkspQ8nfOF++H76Z6MaLl3PuWrfHmpbi5FC8fXf3wsx6u96x5a/obV+Lp5hnmDe45f/p44yuPPRW1pbhxJf5kV+N5nvlgowNvPcHeUdtp+X8+2vj67x+K2lLcXFq9uX3H9b7zQFxbjv/5KFY2fXStl/H/w5lYibhwZvVT+jr+BZ6sxs2lxj89SJIkSZL6VfL1/snV+MaOrgv2+VOr76hfv/OHmnewO/5K4zGff73/7t72Uf14pcPHwrd+3vv39nZ45tM/+u3HfvaV1dPsbYZ3xNm199u/drH94+63bI0vD7cfb+sJ+Wzd571vfHQRcfK77c9kW/M+gq1/gcUJ+ba/RkmSJElSX7odd61bWY7TL8a+h+Oe5uy8f0eM/UWcu9T+sBNH4t6hyLK4d1scfTH+84PGZeePHmpM0J7cte7Cmdj/YGRZ3DMcfzUbN5ZXv7HjT6s//4d2NN4LsPPhePVM+2X83bpxJU4ci0d2Nj797q6heGRfnHhpzS8teufn8fju2JLFlq3x2JNx7r3Od4975+eN519/Mpc3fXQd/5LPdznkE0car9c9w3H85c0drSRJkiQpTX2453xf6nZX9jujO/voJEmSJEnW+53QnX10kiRJkiTr/U7ozj46SZIkSZL1fid0Zx+dJEmSJOmLst4lSZIkSRrcrHdJkiRJksqe9S5JkiRJUtmz3iVJkiRJKnvWuyRJkiRJZS/ter/y8f99BnOL0dFn+2kAAABwGyTd19Y7AAAA9EDSfW29AwAAQA8k3delXe+10YMjeZ7n+cj4Qs16BwAAoOSS7uuSrvfDlbGRyvzcYkzNzOf52JT1DgAAQLkl3ddlXO/TC9X9zcVeX/KjE1XrHQAAgDJLuq/LuN6nZub3H5ycbq738YnJ+nn4vr8SAAAA0E3SfV3G9V7M9bpizPf9lQAAAIBuku5r6x0AAAB6IOm+tt4BAACgB5Lu6zKud9e9AwAAMHCS7usyrnf3nAcAAGDgJN3XZVzvPu8dAACAgZN0X5d0vc8t1kYPjuR5nucj4wu1OesdAACAcku6r0u73jvo+ysBAAAA3STd19Y7AAAA9EDSfW29AwAAQA8k3dfWOwAAAPRA0n1tvQMAAEAPJN3X1jsAAAD0QNJ9bb0DAABADyTd1yVd71Mz83mz0Ymq9Q4AAEDJJd3XZVzv0wvV/fnI+EJtbjHmFi+O5PnhmYvWOwAAAGWWdF+Xcb1PzcyPVOaLN8yPT0zW/7fvrwQAAAB0k3Rfl3G9Ty9Unzg4Od2y3p17BwAAoOSS7usyrvf6Ys/z/PDMxemF6rea5+H7/koAAABAN0n3dUnX+/RC9VuV50fyPF+9AN56BwAAoLyS7usyrvfWd8633sGu768EAAAAdJN0X5dxvRcXutcVN7Hr+ysBAAAA3STd12Vc74crY9Y7AAAAgyXpvi7jep+amc/zsanGeq+NHhxxz3kAAABKLum+LuN6r59vz5uNTlTdtQ4AAICSS7qvS7reO+r7KwEAAADdJN3X1jsAAAD0QNJ9bb0DAABADyTd19Y7AAAA9EDSfT1I692qBwAAoLSS7mvrHQAAAHog6b623gEAAKAHku7rUq/3qZl/HF+otQ71ls+BHyn+qO+vEAAAACTd1yVd7+MTk20TfW4xpheq+/OxqXX/3fdXCAAAAJLu65Ku97nFmFusjR78dut6H5+YHJ2orv/fvr9CAAAAkHRfD9J6P1wZOzxzsfVd9COVeesdAACAMki6rwdsvbede99/cHLaegcAAKAEku7rQVrvUzPzefNa96mZ+ScOftt6BwAAoCSS7utBWu8td7PLRyrz4xOT3jkPAABASSTd1wO23lsVb6Tv+ysEAAAASff14K73iyPNz5Pr+ysEAAAASfd1ydf7SOtN5lsX++HKWP1t89Y7AAAAZZB0X5d0vRfXt+d5Xtyprj7ai+vei1Xf91cIAAAAku7rkq73W9L3VwgAAACS7mvrHQAAAHog6b623gEAAKAHku5r6x0AAAB6IOm+TrveJUmSJEnS5896lyRJkiSp7FnvkiRJkiSVPetdkiRJkqSyZ71LkiRJklT2rHdJkiRJksqe9S5JkiRJUtmz3iVJkiRJKnvJ1/szeyLLIsui+nb7H81V2v/o3TcaX3lmtv0rW7bGmQ/WfHvxR3ll9Yt51vhiN9v3xNVEhypJkiRJUpoGZr1nWfzBd+KTlm+33iVJkiRJX5AGab1nWZysrn679S5JkiRJ+oI0YOv9vl1xebn9j1rXe2vV2fafJkmSJEnSIPb/1sMBEvFZP0IAAAAASUVORK5CYII=" alt="" />
dp记录的是不是11串
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
const int maxn=;
const int mod=;
int n,m,t;
int dp[maxn][],sum[maxn];
void init()
{
memset(dp,,sizeof(dp));
dp[][]=dp[][]=;
sum[]=;
for(int i=;i<=maxn;i++)
{
dp[i][]=dp[i-][]+dp[i-][];
dp[i][]%=mod;
dp[i][]=dp[i-][];
dp[i][]%=mod;
sum[i]=sum[i-]*;
sum[i]%=mod;
}
}
int main()
{
int i,j,k;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
scanf("%d",&t);
init();
while(t--)
{
scanf("%d",&n);
int ans=(sum[n]-dp[n][]-dp[n][])%mod;
printf("%d\n",(ans+mod)%mod);
}
return ;
}
GDUT 校赛01 dp的更多相关文章
- GDUT 校赛02 dp回文串
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABSkAAAIhCAIAAAAtmainAAAgAElEQVR4nOzdfaxkd33n+ZJacstqa3 ...
- 2015 GDUT校赛
周末打了个GDUT的校赛,也是作为SCAU的一场个人排位. 比赛中竟然卡了个特判,1个半钟就切了5条了,然后一直卡. 还有其他两条可以做的题也没法做了,性格太执着对ACM来说也是错呀. 讲回正题 . ...
- ZOJ3956 ZJU2017校赛(dp)
题意:给出n对(h,c) 记 sumh为选出的h的总和 sumc为选出的c的总和 你可以从中选出任意多对(可以不选) 使得 sumh^2-sumh*sumc-sumc^2 最大 输出最大值 输入 ...
- GDUT校赛
题目链接:http://4.gdutcode.sinaapp.com/contest.php?cid=1021 F 题意:给出n和m,要求满足gcd(x,y)=n && lcm(x,y ...
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- 2014上半年acm总结(1)(入门+校赛)
大一下学期才开始了acm,不得不说有一点迟,但是acm确实使我的生活充实了很多,,不至于像以前一样经常没事干= = 上学期的颓废使我的c语言学的渣的一笔..靠考前突击才基本掌握了语法 寒假突然醒悟, ...
- HZNU第十二届校赛赛后补题
愉快的校赛翻皮水! 题解 A 温暖的签到,注意用gets #include <map> #include <set> #include <ctime> #inclu ...
- Comet OJ 夏季欢乐赛 篮球校赛
Comet OJ 夏季欢乐赛 篮球校赛 题目传送门 题目描述 JWJU注重培养学生的"唱,跳,rap,篮球"能力.于是每年JWJU都会举办篮球校赛,来给同学们一个切磋篮球技术的平台 ...
- xdoj 2020校赛复盘
平时写东西都不喜欢复盘,这肯定不是一个好习惯,感觉每次花好几个小时甚至好几天写题目然后没写出来也不去看题解是一种很蠢的行为( 花了这么久时间打校赛,虽然水平很low,数据结构也不太会用,还是记录一下自 ...
随机推荐
- 神器Alfred使用
神器官网:http://www.alfredapp.com/ 许多人装好了之后就再也没有怎么使用过,这软神器, 一直不明白它为什么叫神器,最近研究了一下,真的是,很多东西我们没有好好利用 部分使用功能 ...
- Unity3d三大光照渲染介绍
重要:在目前市面上常见的游戏引擎中,主要采用以下三种灯光实现方式: 顶点照明渲染路径细节 Vertex Lit Rendering Path Details 正向渲染路径细节 Forward Re ...
- Strust的基础情况
Struts的优点: 1.实现MVC模式,结构清晰 2.丰富的标签(tag) 3.通过配置文件页面导航,便于后期维护 4.与Servlet API松耦合,便于测试 Structs2=Structs1的 ...
- 存储过程优点&缺点
存储过程不仅仅适用于大型项目,对于中小型项目,使用存储过程也是非常有必要的.其威力和优势主要体现在: 1.存储过程只在创造时进行编译,以后每次执行存储过程都不需再重新编译,而一般 SQL 语句每执行一 ...
- 让我们一起学习《Node.js入门》一书吧!
Node.js入门 读完本书之后,你将完成一个完整的web应用,该应用允许用户浏览页面以及上传文件. 里面对一些知识的讲解,让你略窥Node.js的门径.最好一段代码一段代码的写下来,我的习惯是手里拿 ...
- HDU 4883 TIANKENG’s restaurant
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4883 解题报告:一家餐馆一天中有n波客人来吃饭,第 i 波 k 客人到达的时间是 s ,离开时的时间 ...
- [Effective JavaScript 笔记] 第9条:始终声明局部变量
如果忘记将变量声明为局部变量,该变量将会隐式地转变为全局变量 function swap(a,i,j){ temp=a[i]; a[i]=a[j]; a[j]=temp; } 尽管该程序没有使用var ...
- [Effective JavaScript 笔记]第16条:避免使用eval创建局部变量
js中的eval函数是一个强大.灵活的工具.强大的工具容易被滥用,所以了解是值得的.(本人只用过它来处理json数据).错误使用eval函数的方式一:允许它干扰作用域.调用eval函数会将其参数作为j ...
- lucene搜索方式(query类型)
Lucene有多种搜索方式,可以根据需要选择不同的方式. 1.词条搜索(单个关键字查找) 主要对象是TermQuery 调用方式如下: Term term=new Term(字段名,搜索关键字);Qu ...
- 新鲜出炉的百度js面试题
(文章是从我的个人主页上粘贴过来的,大家也可以访问我的主页 www.iwangzheng.com) 最近两位同学入职百度,带回来的笔试题基本上毫无悬念,不过有一个小题看到让人忍不住笑出声来,真的很无聊 ...