Spark核心—RDD初探
本文目的
最近在使用Spark进行数据清理的相关工作,初次使用Spark时,遇到了一些挑(da)战(ken)。感觉需要记录点什么,才对得起自己。下面的内容主要是关于Spark核心—RDD的相关的使用经验和原理介绍,作为个人备忘,也希望对读者有用。
为什么选择Spark
原因如下
- 代码复用:使用Scala高级语言操作Spark,灵活方便,面向对象,函数编程的语言特性可以全部拿来。Scala基本上可以无缝集成java及其相关库。最重要的是,可以封装组件,沉淀工作,提高工作效率。之前用hive + python的方式处理数据,每个处理单元是python文件,数据处理单元之间的交互是基于数据仓库的表格,十分不灵活,很难沉淀常见的工作。
- 机器学习:Spark可以实现迭代逻辑,可以轻松实现一些常见的机器学习算法,而且spark自带机器学习库mllib和图算法包graphyx,为后面的数据挖掘应用提供了想象空间。
Spark计算性能虽然明显比Hadoop高效,但并不是我们技术选型的主要原因,因为现有基于Hadoop +hive的计算性能已经足够了。
基石哥—RDD
整个spark衍生出来的工具都是基于RDD(Resilient Distributed Datesets),如图:
RDD是一个抽象的数据集,提供对数据并行和容错的处理。初次始使用RDD时,其接口有点类似Scala的Array,提供map,filter,reduce等操作。但是,不支持随机访问。刚开始不太习惯,但是逐渐熟悉函数编程和RDD 的原理后,发现随机访问数据的场景并不常见。
为什么RDD效率高
Spark官方提供的数据是RDD在某些场景下,计算效率是Hadoop的20X。这个数据是否有水分,我们先不追究,但是RDD效率高的由一定机制保证的:
- RDD数据只读,不可修改。如果需要修改数据,必须从父RDD转换(transformation)到子RDD。所以,在容错策略中,RDD没有数据冗余,而是通过RDD父子依赖(血缘)关系进行重算实现容错。
- 多个RDD操作之间,数据不用落地到磁盘上,避免不必要的I/O操作。
- RDD中存放的数据可以是java对象,所以避免的不必要的对象序列化和反序列化。
总而言之,RDD高效的主要因素是尽量避免不必要的操作和牺牲数据的操作精度,用来提高计算效率。
闭包外部变量访问原则
RDD相关操作都需要传入自定义闭包函数(closure),如果这个函数需要访问外部变量,那么需要遵循一定的规则,否则可能会出现异常。闭包函数传入到节点时,需要经过下面的步骤:
- 使用反射机制,找到所有需要访问的变量,并封装到对象中,然后序列化
- 将序列化后的对象通过网络传输到其他节点上
- 反序列化闭包对象
- 子指定节点执行闭包函数,外部变量在闭包内的修改不会被反馈到驱动程序。
简而言之,就是通过网络,传递函数,然后执行。所以,被传递的对象必须可以序列化和反序列化,否则传递失败。单机本地执行时,仍然会执行上面四步。
广播机制也可以做到这一点,但是频繁的使用广播会使代码不够简洁,而且广播设计的初衷是将较大数据缓存到节点上,避免多次数据传输,提高计算效率,而不是用于进行外部变量访问。
参考资料
Spark核心—RDD初探的更多相关文章
- Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、
1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...
- Spark核心——RDD
Spark中最核心的概念为RDD(Resilient Distributed DataSets)中文为:弹性分布式数据集,RDD为对分布式内存对象的 抽象它表示一个被分区不可变且能并行操作的数据集:R ...
- Spark核心RDD:combineByKey函数详解
https://blog.csdn.net/jiangpeng59/article/details/52538254 为什么单独讲解combineByKey? 因为combineByKey是Spark ...
- Spark核心原理初探
一.运行架构概览 Spark架构是主从模型,分为两层,一层管理集群资源,另一层管理具体的作业,两层是解耦的.第一层可以使用yarn等实现. Master是管理者进程,Worker是被管理者进程,每个W ...
- 1.spark核心RDD特点
RDD(Resilient Distributed Dataset) Spark源码:https://github.com/apache/spark abstract class RDD[T: C ...
- Spark的核心RDD(Resilient Distributed Datasets弹性分布式数据集)
Spark的核心RDD (Resilient Distributed Datasets弹性分布式数据集) 原文链接:http://www.cnblogs.com/yjd_hycf_space/p/7 ...
- Spark之RDD容错原理及四大核心要点
一.Spark RDD容错原理 RDD不同的依赖关系导致Spark对不同的依赖关系有不同的处理方式. 对于宽依赖而言,由于宽依赖实质是指父RDD的一个分区会对应一个子RDD的多个分区,在此情况下出现部 ...
- Spark RDD初探(一)
本文概要 本文主要从以下几点阐述RDD,了解RDD 什么是RDD? 两种RDD创建方式 向给spark传递函数Passing Functions to Spark 两种操作之转换Transformat ...
- spark系列-2、Spark 核心数据结构:弹性分布式数据集 RDD
一.RDD(弹性分布式数据集) RDD 是 Spark 最核心的数据结构,RDD(Resilient Distributed Dataset)全称为弹性分布式数据集,是 Spark 对数据的核心抽象, ...
随机推荐
- App开发的过程
直播App开发的过程 第一步:分解直播App的功能,我们以X客为例 视频直播功能,这是一款直播App最主要的功能,要能支持视频直播RTMP推流,使画面传输流畅.清晰(美颜后的清晰,你懂的聊天功能,用户 ...
- linux 下 jdk+tomcat+mysql 的 jsp 环境搭建
JDK 在 linux 下安装 1. 把安装文件放在 /opt 下,并执行 [root@localhost opt]# ./jdk-1_5_0_06-linux-i586.bin 并 ...
- (mysql)Packet for query is too large
http://jingyan.baidu.com/article/fb48e8be3f81716e622e14ee.html windows如何重启mysql 开始->运行->cmd 停止 ...
- web浏览器工作原理
HTML在浏览器里的渲染原理 我们打开的页面(Web页面)在各种不同的浏览器中运行,浏览器载入.渲染页面的速度直接影响着用户体验,简单地说下页面渲染,页面渲染就是浏览器将html代码根据CSS定义的规 ...
- Unix常用指令
pwd 表示获取自己当前所在位置 ls 表示查看当前文件夹中的内容 cd 进入指定目录 mkdir 文件夹1 创建一个文件夹名为文件夹1的文件夹 rmdir 文件夹2 删除一个文件夹名为文件夹2的 ...
- How to Call SharePoint 2013 API Service to Query The Lists
How to Call SharePoint 2013 API In SharePoint 2013, we can query the list by it owner service, then ...
- LDO-XC6216C202MR-G
XC6216C202MR-G 1.改产品是特瑞士(TOREX)公司电源管理芯片,输入电压可达28V,输出可调23V,最大输出电流150mA.压差最小为300mV.该系列有固定式输出和可调式 ...
- pm2使用介绍
https://segmentfault.com/a/1190000002539204
- 【转发】Cross-thread operation not valid: Control 'progressBar1' accessed from a thread other than the thread it was created on
当您试图从单独的线程更新一个win form时,您将得到如下错误信息: "Cross-thread operation not valid: Control 'progressBar1' ...
- 个性二维码开源专题<液化/圆角/效果>
基础方法: ChangeFillShape //修改填充形状 ChangeFillShape(...) // 摘要: // 修改填充形状 // // 参数: // g: // 图形画板 // // F ...