题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143

分析:

易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋值,所以问题就是如何求每条边的期望。

直接求没办法求的,可以先求出每个点经过的期望。

易得f[i]=∑f[j]/d[j] j->i有边

特殊的,对于起点,因为刚开始就在,所以应该是f[1]=1+∑f[j]/d[j];对于终点,到了终点后不能再到其他节点,所以对其他边并没有贡献,所以f[n]=0

然后就可以高斯消元解方程组,解得每个点的期望

那么对于边(u,v),这个边的期望(即经过次数)就是f[u]/d[u]+f[v]/d[v]

那么对于每个边的期望排序,期望小的对应编号大的,计算一下就行了。(排序不等式)

[BZOJ 3143][HNOI2013]游走(数学期望)的更多相关文章

  1. BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)

    题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...

  2. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  3. bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元

    [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3394  Solved: 1493[Submit][Status][Disc ...

  4. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  5. BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...

  6. bzoj 3143: [Hnoi2013]游走

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  7. BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

  8. bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的 ...

  9. ●BZOJ 3143 [Hnoi2013]游走

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3143题解: 期望dp,高斯消元 首先有这样一种贪心分配边的编号的方案:(然后我没想到,233 ...

随机推荐

  1. java 使用POI批量导入excel数据

    一.定义 Apache POI是Apache软件基金会的开放源码函式库,POI提供API给Java程序对Microsoft Office格式档案读和写的功能. 二.所需jar包: 三.简单的一个读取e ...

  2. Learning c section 1

    #include<stdio.h> void main() { puts("hello world"); int x=4; //the %p format will p ...

  3. cri-o 创建非infra容器

    1.// cri-o/server/container.go // CreateContainer creates a new container in specified PodSandbox fu ...

  4. JS的构造及其事件注意点总结

    一:js的组成 ECMAscript bom dom 类型包括: number boolean  string undefined  object function 二:基本函数作用 parseInt ...

  5. NGUI:HUD Text(头顶伤害漂浮文字)

    HUD Text 很早之前就有闻于NGUI中的HUD Text插件,今天得以尝试,看了会儿官方的文档,楞是没给看明白,官方的ReadMe.txt写的使用方法如下: 官网Usage 1. Attach ...

  6. Linux压力测试工具Tsung安装、使用和图形报表生成

    简介 Tsung 是一个压力测试工具,可以测试包括HTTP, WebDAV, PostgreSQL, MySQL, LDAP, and XMPP/Jabber等服务器.针对 HTTP 测试,Tsung ...

  7. java10-1 Object类

    Object:类      Object 是类层次结构的根类.每个类都使用 Object 作为超类. 每个类都直接或者间接的继承自Object类. Object类的方法: public int has ...

  8. [Usaco2010 OPen]Triangle Counting 数三角形

    [Usaco2010 OPen]Triangle Counting 数三角形 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 394  Solved: 1 ...

  9. OV7725学习(二)

    首先要配置OV7725摄像头的寄存器,遵循的是SCCB协议,配置之前需要1ms的时间等待,保证系统稳定,而且刚开始要丢弃前10帧的数据,因为认为前10帧的数据是不稳定的,图1就是数据手册上关于这一点的 ...

  10. Spring Batch实践

    Spring Batch在大型企业中的最佳实践 在大型企业中,由于业务复杂.数据量大.数据格式不同.数据交互格式繁杂,并非所有的操作都能通过交互界面进行处理.而有一些操作需要定期读取大批量的数据,然后 ...