描述
One day,Tom’s girlfriend give him an array A which contains N integers and asked him:Can you choose some integers from the N integers and the sum of them is equal to K. 
输入
There are multiple test cases.
Each test case contains three lines.The first line is an integer
N(1≤N≤20),represents the array contains N integers. The second line
contains N integers,the ith integer represents A[i](-10^8≤A[i]≤10^8).The
third line contains an integer K(-10^8≤K≤10^8).
输出
If Tom can choose some integers from the array and their them is K,printf ”Of course,I can!”; other printf ”Sorry,I can’t!”.
样例输入
4
1 2 4 7
13
4
1 2 4 7
15
样例输出

Of course,I can!

Sorry,I can't!

题目大意就是,给你n个数, 再给一个sum,能不能用这n个数,加起来等于sum!

主要难点在减少循环。

//时间超限代码:

//Asimple
#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std;
#define CLS(a) memset(a,0,sizeof (a))
const int maxn = 25;
int n, T, num, cnt, point, line, x, y;
int vis[maxn];//标记数组,标记是否走过
int a[maxn];
bool flag; bool check()
{
for(int i=0; i<n; i++)
if( !vis[i] )
return false ;
return true;
} void DFS(int cnt)
{
if( check() ) return ;
if( cnt == num )
{
flag = true ;
return ;
}
for(int i=0; i<n; i++)
{
if( !vis[i] && cnt + a[i] <= num )
{
vis[i] = 1 ;
DFS(cnt + a[i] ) ;
vis[i] = 0 ;
}
}
} int main()
{
while( cin >> n )
{
cnt = 0 ;
CLS(vis);
flag = false ;
for(int i=0; i<n; i++)
cin >> a[i] ;
cin >> num ;
DFS(cnt);
if( flag ) cout << "Of course,I can!" << endl ;
else cout << "Sorry,I can't!" << endl ;
} return 0;
}

减少循环后的代码:

//Asimple
#include <iostream>
using namespace std;
const int maxn = 25;
int n, num, cnt;
int a[maxn];
bool flag; void DFS(int x)
{
if( cnt > num ) return ;
if( cnt == num )
{
flag = true ;
return ;
}
for(int i=x; i<n; i++)
{
cnt += a[i] ;
DFS(i+1);
cnt -= a[i] ;
}
} int main()
{
while( cin >> n )
{
cnt = 0 ;
flag = false ;
for(int i=0; i<n; i++)
cin >> a[i] ;
cin >> num ;
DFS(0);
if( flag ) cout << "Of course,I can!" << endl ;
else cout << "Sorry,I can't!" << endl ;
} return 0;
}

ACM题目————The partial sum problem的更多相关文章

  1. NYOJ--927--dfs--The partial sum problem

    /* Name: NYOJ--927--The partial sum problem Author: shen_渊 Date: 15/04/17 19:41 Description: DFS,和 N ...

  2. NYOJ 927 The partial sum problem 【DFS】+【剪枝】

    The partial sum problem 时间限制:1000 ms  |  内存限制:65535 KB 难度:2 描写叙述 One day,Tom's girlfriend give him a ...

  3. NYoj The partial sum problem(简单深搜+优化)

    题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=927 代码: #include <stdio.h> #include & ...

  4. The partial sum problem

    算法:搜索 描述 One day,Tom's girlfriend give him an array A which contains N integers and asked him:Can yo ...

  5. nyoj 927 The partial sum problem(dfs)

    描述 One day,Tom’s girlfriend give him an array A which contains N integers and asked him:Can you choo ...

  6. 2017-5-14 湘潭市赛 Partial Sum 给n个数,每次操作选择一个L,一个R,表示区间左右端点,该操作产生的贡献为[L+1,R]的和的绝对值-C。 0<=L<R<=n; 如果选过L,R这两个位置,那么以后选择的L,R都不可以再选择这两个位置。最多操作m次,求可以获得的 最大贡献和。

    Partial Sum Accepted : Submit : Time Limit : MS Memory Limit : KB Partial Sum Bobo has a integer seq ...

  7. HDu 1001 Sum Problem 分类: ACM 2015-06-19 23:38 12人阅读 评论(0) 收藏

    Sum Problem Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  8. HD2058The sum problem

    The sum problem Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

  9. ACM题目推荐(刘汝佳书上出现的一些题目)[非原创]

    原地址:http://blog.csdn.net/hncqp/article/details/1758337 推荐一些题目,希望对参与ICPC竞赛的同学有所帮助. POJ上一些题目在http://16 ...

随机推荐

  1. sqlplus登陆

    cd \sqlplus sys@test_id as sysdba 切换用户SQL> connect system@test_id

  2. SpinLock 实现

    /* Example: SpinLock Description: SpinLock is the lock implementation using AtomicInteger as a primi ...

  3. c#两个数据库之间进行表拷贝

  4. 几个PostgreSQL数据库操作总结

    创建表 语法:如下 create table     table_name     (column_name         column_type(parametes)options,…); 注意: ...

  5. Leetcode: Palindrome Pairs

    Given a list of unique words, find all pairs of distinct indices (i, j) in the given list, so that t ...

  6. 通达信:显示K线图日期

    INFO_A:=STRCAT('INFO_A=', STRCAT(CON2STR(REF(MONTH, REF_BAR_A), 0), STRCAT('-', STRCAT(CON2STR(REF(D ...

  7. uva 11520 - Fill the Square

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  8. List, Set, Map是否继承自Collection接口?

    List, Set, Map是否继承自Collection接口? 答:List,Set是Map不是

  9. hdu5381 The sum of gcd

    莫队算法,预处理出每个数字往后的gcd情况,每个数字的gcd只可能是他的因子,因此后面最多只可能有logn种,可以先预处理出,然后套莫队算法,复杂度O(n*sqrt(n)*log(n)). 代码 #i ...

  10. strcpy  复制字符串函数

    #include<stdio.h> #include<assert.h> char *strcopy(char * strDest , const char * strSrc) ...