XTU 1242 Yada Number 容斥
Yada Number
Problem Description:
Every positive integer can be expressed by multiplication of prime integers. Duoxida says an integer is a yada number if the total amount of 2,3,5,7,11,13 in its prime factors is even.
For instance, 18=2 * 3 * 3 is not a yada number since the sum of amount of 2, 3 is 3, an odd number; while 170 = 2 * 5 * 17 is a yada number since the sum of amount of 2, 5 is 2, a even number that satifies the definition of yada number.
Now, Duoxida wonders how many yada number are among all integers in [1,n].
Input
The first line contains a integer T(no more than 50) which indicating the number of test cases. In the following T lines containing a integer n. ()
Output
For each case, output the answer in one single line.
Sample Input
2
18
21
Sample Output
9
11
题意:
给你一个n,问你1到n里面有多少个数满足 因子中是2,3,5,7,11,13的个数为偶数个
题解:
预处理出所有的x,满足x只含有2,3,5,7,11,3这几个质因子,且数目为偶数。x的数目略大于10000
注意加入0个的情况,即1.
对于一个数n,枚举所有的x,对于一个x,f(n/x)即求出[1,n/x]中不含有2,3,5,7,11,13作为因子的数有多少个,这个是经典的容斥问题。
最后对所有的f(n/x)求和即可
#include<bits/stdc++.h>
using namespace std;
const int N = 3e6+, M = 1e6+, mod = 1e9+,inf = 1e9; typedef long long ll;
const ll maxn = 1e9;
int cnt = , ans,n;
ll b[N];
int a[] = {,,,,,};
ll gcd(ll a,ll b) {return b==?a:gcd(b,a%b);}
void dfs(ll x,int f,int num) {
if(num==) {
if(!f) b[cnt++] = x;
return ;
}
while(x<=maxn) {
dfs(x,f,num+);
x*=a[num];
f^=;
}
}
void init() {
dfs(,,);
sort(b,b+cnt);
} void inclu(int i,int num,ll tmp) {
if(tmp>n) return ;
if(i>=) {
if(num==) ans = ;
else {
if(num&) ans = ans+n/tmp;
else ans = ans-n/tmp;
}
return ;
}
inclu(i+,num,tmp);
inclu(i+,num+,tmp*a[i]/gcd(tmp,a[i]));
} void solve() {
int Ans = ;
scanf("%d",&n);
int tm = n;
for(int i=;i<cnt&&b[i]<=tm;i++) {
n = tm/b[i];
ans = ;
inclu(,,);
Ans+=(n - ans);
}
printf("%d\n",Ans);
}
int main() {
int T;
cnt = ;
init();
scanf("%d",&T);
while(T--) {
solve();
}
return ;
}
XTU 1242 Yada Number 容斥的更多相关文章
- xtu 1242 Yada Number 容斥原理
Yada Number Problem Description: Every positive integer can be expressed by multiplication of prime ...
- xtu 1242 Yada Number 打表
Yada Number Time Limit : 2000 MS Memory Limit : 65536 KB Yada Number Problem Description: ...
- CF1221G Graph And Number(容斥,搜索,FMT)
至今觉得这场 edu 的 G 比 EF 都要简单-- 不知道为什么出题人要把 \(m=0\) 放进去,先特判掉. 要求至少一个 \(0\),至少一个 \(1\),至少一个 \(2\),容斥一波,变成总 ...
- 双元素非递增(容斥)--Number Of Permutations Educational Codeforces Round 71 (Rated for Div. 2)
题意:https://codeforc.es/contest/1207/problem/D n个元素,每个元素有a.b两个属性,问你n个元素的a序列和b序列有多少种排序方法使他们不同时非递减(不同时g ...
- cf#305 Mike and Foam(容斥)
C. Mike and Foam time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- UVa12633 Super Rooks on Chessboard(容斥 + FFT)
题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...
- HDU How many integers can you find 容斥
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- HDU 5794 A Simple Chess (容斥+DP+Lucas)
A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...
随机推荐
- 快速搭建ssh(最终版)
一个月又忘了.还是做个笔记.自己看下就能想起来... 1.在MyEclipse中新建web Project 2.首先整合struts
- QueryHelp
//辅助查询 Author:高兵兵 public class QueryHelp { #region IList<T> ToList<T>(string cmdText,str ...
- thinkphp-2
php的跨文件变量? global $g是一个脚本文件中, 函数外部的变量在函数中要使用时的 全局变量 $_GET等是所谓的"超全局变量", 但仍然是只能在一个脚本的范围内使用 要 ...
- javascript单体模式
单体模式的思想在于保证一个特定类仅有一个实例.这意味着当第二次使用同一个类创建的新对象的时候,应该得到与第一个所创建的对象完全相同. javacript中并没有类,因此对单体咬文嚼字的定义严格来说并没 ...
- 用poi框架进行批量导入导出实例
Apache POI是Apache软件基金会的开放源码函式库,POI提供API给Java程式对Microsoft Office格式档案读和写的功能.我们这里使用poi对数据库中的数据进行批量导出,以及 ...
- 在线调试和演示的前端开发工具------http://jsfiddle.net/
在线调试和演示的前端开发工具------http://jsfiddle.net/
- System.SysUtils.TMarshaller 与 System.TMarshal
转自:http://www.cnblogs.com/del/archive/2013/06/10/3130974.html TMarshaller(结构) 基于 TMarshal(是有一大堆的 cla ...
- HLG2062(make,heap问题)
最小的n个和 Time Limit: 1000 MS Memory Limit: 32768 K Total Submit: 129(37 users) Total Accepted: 35(29 u ...
- Java字符串split函数的注意事项
Java字符串的split方法可以分割字符串,但和其他语言不太一样,split方法的参数不是单个字符,而是正则表达式,如果输入了竖线(|)这样的字符作为分割字符串,会出现意想不到的结果, 如, Str ...
- Nginx反向代理的目录访问问题
Nginx反向代理的目录访问问题 2013-05-13 23:21 2730人阅读 评论(0) 收藏 举报 从昨天就开始纠结了,在做实验的时候,遇到目录访问的问题,如下 前端nginx vhost的设 ...