cluster analysis in data mining
https://en.wikipedia.org/wiki/K-means_clustering
k-means clustering is a method of vector quantization, originally from signal processing, that is popular for cluster analysis in data mining. k-means clustering aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells.
The problem is computationally difficult (NP-hard); however, there are efficient heuristic algorithms that are commonly employed and converge quickly to a local optimum. These are usually similar to the expectation-maximization algorithm for mixtures of Gaussian distributions via an iterative refinement approach employed by both algorithms. Additionally, they both use cluster centers to model the data; however, k-means clustering tends to find clusters of comparable spatial extent, while the expectation-maximization mechanism allows clusters to have different shapes.
The algorithm has a loose relationship to the k-nearest neighbor classifier, a popular machine learning technique for classification that is often confused with k-means because of the k in the name. One can apply the 1-nearest neighbor classifier on the cluster centers obtained by k-means to classify new data into the existing clusters. This is known as nearest centroid classifier or Rocchio algorithm[citation needed].
cluster analysis in data mining的更多相关文章
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- Cluster analysis
https://en.wikipedia.org/wiki/Cluster_analysis Cluster analysis or clustering is the task of groupin ...
- Data Mining的十种分析方法——摘自《市场研究网络版》谢邦昌教授
Data Mining的十种分析方法: 记忆基础推理法(Memory-Based Reasoning:MBR) 记忆基础推理法最主要的概念是用已知的案例(case)来预测未来案例的一些属 ...
- A web crawler design for data mining
Abstract The content of the web has increasingly become a focus for academic research. Computer prog ...
- Weka 3: Data Mining Software in Java
官方网站: Weka 3: Data Mining Software in Java 相关使用方法博客 WEKA使用教程(经典教程转载) (实例数据:bank-data.csv) Weka初步一.二. ...
- data mining,machine learning,AI,data science,data science,business analytics
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
- 论文翻译:Data mining with big data
原文: Wu X, Zhu X, Wu G Q, et al. Data mining with big data[J]. IEEE transactions on knowledge and dat ...
- 18 Candidates for the Top 10 Algorithms in Data Mining
Classification============== #1. C4.5 Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.Morga ...
随机推荐
- JavaBeans、EJB和POJO详解
转自:http://developer.51cto.com/art/200906/130814.htm J2EE学习者越来越多,J2EE本身技术不断在发展,涌现出各种概念,本文章试图从一种轻易理解的角 ...
- C/C++函数使用
1 memset 将s所指向的某一块内存中的前n个 字节的内容全部设置为ch指定的ASCII值, 块的大小由第三个参数指定,这个函数通常为新申请的内存做初始化工作, 其返回值为指向s的指针. 函数介绍 ...
- Effective C++笔记:设计与声明
条款18:让接口容易被正确使用,不易被误用 1,好的接口很容易被正确使用,不容易被误用.你应该在你的所有接口中努力达成这些性质. 2,“促进正使用”的办法包括接口的一致性,以及与内置类型的行为兼容. ...
- web的三种监听器
servletcontextlistener servletrequestlistener httpsessionlistener
- Spring的bean标签
Spring框架中主要有四种标签bean.alias.import.beans,其中bean标签是其他标签的基础. 一.bean标签的属性 scope:用来配置spring bean的作用域 sing ...
- jquery概要--基础01
jquery对象,DOM对象 var $cr = $('#cr'); var cr = $cr[0]; /var cr = $cr.get(0); var cr = document ...
- unity textFilde
#pragma strict private var editUsername:String; private var editPassword:String; private var editSho ...
- iScroll5 API速查随记
版本 针对iScroll的优化.为了达到更高的性能,iScroll分为了多个版本.你可以选择最适合你的版本.目前我们有以下版本: iscroll.js,这个版本是常规应用的脚本.它包含大多数常用的功能 ...
- android 常用第三方包的代码混淆
首先在:project.properties 文件下,启动代码混淆 proguard.config=${sdk.dir}/tools/proguard/proguard-android.txt:pro ...
- 【BZOJ】1458: 士兵占领(上下界网络流)
http://www.lydsy.com/JudgeOnline/problem.php?id=1458 是不是我脑洞太小了.......直接弄上下界最小流........(就当复习了.. 二分图X和 ...