Mean Requests
time limit per test

4 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In this problem you will have to deal with a real algorithm that is used in the VK social network.

As in any other company that creates high-loaded websites, the VK developers have to deal with request statistics regularly. An important indicator reflecting the load of the site is the mean number of requests for a certain period of time of T seconds (for example, T = 60 seconds = 1 min and T = 86400 seconds = 1 day). For example, if this value drops dramatically, that shows that the site has access problem. If this value grows, that may be a reason to analyze the cause for the growth and add more servers to the website if it is really needed.

However, even such a natural problem as counting the mean number of queries for some period of time can be a challenge when you process the amount of data of a huge social network. That's why the developers have to use original techniques to solve problems approximately, but more effectively at the same time.

Let's consider the following formal model. We have a service that works for n seconds. We know the number of queries to this resourceat at each moment of time t (1 ≤ t ≤ n). Let's formulate the following algorithm of calculating the mean with exponential decay. Let c be some real number, strictly larger than one.

// setting this constant value correctly can adjust    // the time range for which statistics will be calculated double c = some constant value; 
// as the result of the algorithm's performance this variable will contain // the mean number of queries for the last // T seconds by the current moment of time double mean = 0.0;
for t = 1..n: // at each second, we do the following: // at is the number of queries that came at the last second; mean = (mean + at / T) / c;

Thus, the mean variable is recalculated each second using the number of queries that came at that second. We can make some mathematical calculations and prove that choosing the value of constant c correctly will make the value of mean not very different from the real mean value ax at t - T + 1 ≤ x ≤ t.

The advantage of such approach is that it only uses the number of requests at the current moment of time and doesn't require storing the history of requests for a large time range. Also, it considers the recent values with the weight larger than the weight of the old ones, which helps to react to dramatic change in values quicker.

However before using the new theoretical approach in industrial programming, there is an obligatory step to make, that is, to test its credibility practically on given test data sets. Your task is to compare the data obtained as a result of the work of an approximate algorithm to the real data.

You are given n values at, integer T and real number c. Also, you are given m moments pj (1 ≤ j ≤ m), where we are interested in the mean value of the number of queries for the last T seconds. Implement two algorithms. The first one should calculate the required value by definition, i.e. by the formula . The second algorithm should calculate the mean value as is described above. Print both values and calculate the relative error of the second algorithm by the formula , where approx is the approximate value, obtained by the second algorithm, and real is the exact value obtained by the first algorithm.

Input

The first line contains integer n (1 ≤ n ≤ 2·105), integer T (1 ≤ T ≤ n) and real number c (1 < c ≤ 100) — the time range when the resource should work, the length of the time range during which we need the mean number of requests and the coefficient c of the work of approximate algorithm. Number c is given with exactly six digits after the decimal point.

The next line contains n integers at (1 ≤ at ≤ 106) — the number of queries to the service at each moment of time.

The next line contains integer m (1 ≤ m ≤ n) — the number of moments of time when we are interested in the mean number of queries for the last T seconds.

The next line contains m integers pj (T ≤ pj ≤ n), representing another moment of time for which we need statistics. Moments pj are strictly increasing.

Output

Print m lines. The j-th line must contain three numbers realapprox and error, where:

  •  is the real mean number of queries for the last T seconds;
  • approx is calculated by the given algorithm and equals mean at the moment of time t = pj (that is, after implementing the pj-th iteration of the cycle);
  •  is the relative error of the approximate algorithm.

The numbers you printed will be compared to the correct numbers with the relative or absolute error 10 - 4. It is recommended to print the numbers with at least five digits after the decimal point.

Sample test(s)
input
1 1 2.000000 1 1 1
output
1.000000 0.500000 0.500000
input
11 4 1.250000 9 11 7 5 15 6 6 6 6 6 6 8 4 5 6 7 8 9 10 11
output
8.000000 4.449600 0.443800 9.500000 6.559680 0.309507 8.250000 6.447744 0.218455 8.000000 6.358195 0.205226 8.250000 6.286556 0.237993 6.000000 6.229245 0.038207 6.000000 6.183396 0.030566 6.000000 6.146717 0.024453
input
13 4 1.250000 3 3 3 3 3 20 3 3 3 3 3 3 3 10 4 5 6 7 8 9 10 11 12 13
output
3.000000 1.771200 0.409600 3.000000 2.016960 0.327680 7.250000 5.613568 0.225715 7.250000 5.090854 0.297813 7.250000 4.672684 0.355492 7.250000 4.338147 0.401635 3.000000 4.070517 0.356839 3.000000 3.856414 0.285471 3.000000 3.685131 0.228377 3.000000 3.548105 0.182702
我看不懂关于real的那个公式。后来发现他是前T个的mean,orz
 #include<stdio.h>
#include<string.h>
#include<math.h>
using namespace std;
typedef long long ll ;
const int M = * 1e5 + ;
int a [M] ;
int n , T , m;
double c ;
double real , mean , error ; int main ()
{
// freopen ("a.txt" , "r" , stdin ) ;
scanf ("%d%d%lf" , &n , &T , &c) ;
for (int i = ; i <= n ; i++) {
scanf ("%d", &a[i] ) ;
}
scanf ("%d" , &m) ; int b[M] ;
for (int i = ; i <= m ; i++) {
scanf ("%d" , &b[i]) ;
}
double sum = ;
double mean = ;
int k = ;
for (int i = ; i <= n ; i++) {
sum += a[i] ;
if (i > T) {
sum -= a[i - T] ;
}
mean = (double) 1.0 * (mean + 1.0 * a[i] / T) / c ;
if (i == b[k]) {
real = 1.0 * sum / T ;
error = fabs (real - mean) / real ;
printf ("%.6f %.6f %.6f\n" , real , mean , error ) ;
k++ ;
}
}
return ;
}

cf.VK CUP 2015.B.Mean Requests的更多相关文章

  1. cf.VK CUP 2015.C.Name Quest(贪心)

    Name Quest time limit per test 2 seconds memory limit per test 256 megabytes input standard input ou ...

  2. Codeforces Round VK Cup 2015 - Round 1 (unofficial online mirror, Div. 1 only)E. The Art of Dealing with ATM 暴力出奇迹!

    VK Cup 2015 - Round 1 (unofficial online mirror, Div. 1 only)E. The Art of Dealing with ATM Time Lim ...

  3. Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)

    题目链接:http://codeforces.com/contest/522/problem/D 题目大意:  给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...

  4. VK Cup 2015 - Round 2 (unofficial online mirror, Div. 1 only) E. Correcting Mistakes 水题

    E. Correcting Mistakes Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset ...

  5. VK Cup 2015 - Finals, online mirror D. Restructuring Company 并查集

    D. Restructuring Company Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  6. VK Cup 2015 - Round 1 -E. Rooks and Rectangles 线段树最值+扫描线

    题意: n * m的棋盘, k个位置有"rook"(车),q次询问,问是否询问的方块内是否每一行都有一个车或者每一列都有一个车? 满足一个即可 先考虑第一种情况, 第二种类似,sw ...

  7. VK Cup 2015 - Round 2 (unofficial online mirror, Div. 1 only) B. Work Group 树形dp

    题目链接: http://codeforces.com/problemset/problem/533/B B. Work Group time limit per test2 secondsmemor ...

  8. VK Cup 2015 - Qualification Round 1 D. Closest Equals 离线+线段树

    题目链接: http://codeforces.com/problemset/problem/522/D D. Closest Equals time limit per test3 secondsm ...

  9. codeforces VK Cup 2015 - Qualification Round 1 B. Photo to Remember 水题

    B. Photo to Remember Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/522/ ...

随机推荐

  1. I2C和LCD信号干扰的解决:硬件工程师都硬不起来,让软件工程师硬着头上

    DEMO4,LCD的clk干扰I2C,I2C无法通信. 把排针压下,去掉LCD的CLK,恢复正常.     过程: 直接跳线I2C,没问题.两排针插到一起就无法通信. 一个个的排针去除,最终找到LCD ...

  2. 高校手机签到系统——第一部分Authority权限系统(下)

    很抱歉,之前寝室光纤断了,所以到现在才更新这个系列的第二篇博客.点击访问高校手机签到系统——第一部分Authority权限系统(上) 这几天我反思了一下上一篇写博上的方式,一味的贴代码式的,是否应该更 ...

  3. [30分钟]MSSQL快速入门教程

    1.什么是SQL语句 sql语言:结构化的查询语言.(Structured Query Language),是关系数据库管理系统的标准语言. 它是一种解释语言:写一句执行一句,不需要整体编译执行.语法 ...

  4. 几种Boost算法的比较(Discrete AdaBoost, Real AdaBoost, LogitBoost, Gentle Adaboost)

    关于boost算法 boost算法是基于PAC学习理论(probably approximately correct)而建立的一套集成学习算法(ensemble learning).其根本思想在于通过 ...

  5. [渣翻译] 在ASP.NET MVC WebAPI项目中使用 AngularJS

    原文地址http://blog.technovert.com/2013/12/setting-up-angularjs-for-asp-net-mvc-n-webapi-project/ 我们最近发布 ...

  6. jTemplate —— 基于jQuery的javascript前台模版引擎

    reference: http://blog.csdn.net/lexinquan/article/details/6674102     http://blog.csdn.net/kuyuyingz ...

  7. c#简单自定义异常处理日志辅助类

    简单写了一个错误日志记录辅助类,记录在此. Loghelper类 using System; using System.Collections.Generic; using System.IO; us ...

  8. 多个TableView的练习

    效果图: 左边图片的代码: // // SecViewController.m // UI__多个TableView练习 // // Created by dllo on 16/3/17. // Co ...

  9. “耐撕”团队 2016.3.25 站立会议

    成员: Z 郑蕊 * 组长 (博客:http://www.cnblogs.com/zhengrui0452/), P 濮成林(博客:http://www.cnblogs.com/charliePU/) ...

  10. Spring配置文件详解:<context:annotation-config/>和<context:component-scan base-package=""/>和<mvc:annotation-driven />

    <context:annotation-config/> 在基于主机方式配置Spring时,Spring配置文件applicationContext.xml,你可能会见<contex ...