LeetCode:Unique Paths I II
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
算法1:最容易想到的是递归解法,uniquePaths(m, n) = uniquePaths(m, n-1) + uniquePaths(m-1, n), 递归结束条件是m或n等于1,这个方法oj超时了
class Solution {
public:
int uniquePaths(int m, int n) {
if(m == || n == )return ;
else return uniquePaths(m, n - ) + uniquePaths(m - , n);
}
};
算法2:动态规划,算法1的递归解法中,其实我们计算了很多重复的子问题,比如计算uniquePaths(4, 5) 和 uniquePaths(5, 3)时都要计算子问题uniquePaths(3, 2),再者由于uniquePaths(m, n) = uniquePaths(n, m),这也使得许多子问题被重复计算了。要保存子问题的状态,这样很自然的就想到了动态规划方法,设dp[i][j] = uniquePaths(i, j), 那么动态规划方程为:
- dp[i][j] = dp[i-1][j] + dp[i][j-1]
- 边界条件:dp[i][1] = 1, dp[1][j] = 1
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > dp(m+, vector<int>(n+, ));
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
dp[i][j] = dp[i-][j] + dp[i][j-];
return dp[m][n];
}
};
上述过程其实是从左上角开始,逐行计算到达每个格子的路线数目,由递推公式可以看出,到达当前格子的路线数目和两个格子有关:1、上一行同列格子的路线数目;2、同一行上一列格子的路线数目。据此我们可以优化上面动态规划方法的空间:
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int>dp(n+, );
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
dp[j] = dp[j] + dp[j-];
return dp[n];
}
};
算法3:其实这个和组合数有关,对于m*n的网格,从左上角走到右下角,总共需要走m+n-2步,其中必定有m-1步是朝右走,n-1步是朝下走,那么这个问题的答案就是组合数:, 这里需要注意的是求组合数时防止乘法溢出 本文地址
class Solution {
public:
int uniquePaths(int m, int n) {
return combination(m+n-, m-);
} int combination(int a, int b)
{
if(b > (a >> ))b = a - b;
long long res = ;
for(int i = ; i <= b; i++)
res = res * (a - i + ) / i;
return res;
}
};
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
这一题可以完全采用和上一题一样的解法,只是需要注意dp的初始化值,和循环的起始值
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[].size();
vector<int>dp(n+, );
dp[] = (obstacleGrid[][] == ) ? : ;
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
if(obstacleGrid[i-][j-] == )
dp[j] = dp[j] + dp[j-];
else dp[j] = ;
return dp[n];
}
};
【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3704091.html
LeetCode:Unique Paths I II的更多相关文章
- LeetCode: Unique Paths I & II & Minimum Path Sum
Title: https://leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m ...
- LeetCode: Unique Paths II 解题报告
Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution Fol ...
- [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )
Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...
- [LeetCode] Unique Paths II 不同的路径之二
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...
- [leetcode]Unique Paths II @ Python
原题地址:https://oj.leetcode.com/problems/unique-paths-ii/ 题意: Follow up for "Unique Paths": N ...
- LEETCODE —— Unique Paths II [Dynamic Programming]
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...
- Leetcode Unique Paths II
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- [Leetcode] unique paths ii 独特路径
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
随机推荐
- iOS支付宝集成时遇到的问题整理(2)
1.集成支付宝SDK编译报错#include<openssl/asn1.h>这一行 “openssl/asn1.h”file not found 解决方法:在BuildSetting 里 ...
- 第八章 了解tempdb数据库
1.一个sqlserver数据库实例上只能有一个tempdb数据库,这个实例上所有的用户都共享这个数据库.2.tempdb数据库在每次sqlserver重启后都会重新创建,所以数据会丢失.3.因为te ...
- 最短路径之迪杰斯特拉(Dijkstra)算法
迪杰斯特拉(Dijkstra)算法主要是针对没有负值的有向图,求解其中的单一起点到其他顶点的最短路径算法.本文主要总结迪杰斯特拉(Dijkstra)算法的原理和算法流程,最后通过程序实现在一个带权值的 ...
- jsp EL 表达式
EL表达式 EL 全名为Expression Language EL 语法很简单,它最大的特点就是使用上很方便.接下来介绍EL主要的语法结构: ${sessionScope.user.sex} 所有E ...
- 虚拟机Linux----Ubuntu1204----安装jdk1.8
1.介绍 这里主要讲一下,如何在Ubuntu1204下通过压缩包的方式安装jdk1.8,rpm的直接运行就行了. 2.步骤 2.1 下载 地址:http://www.oracle.com/techne ...
- CI 框架中的自定义路由规则
在 CI 框架中,一个 URL 和它对应的控制器中的类以及类中的方法是一一对应的,如: www.test.com/user/info/zhaoyingnan 其中 user 对应的就是控制器中的 us ...
- jquery获取复选框(checkbox)的选中值(一组和单个)
使用jquery获取一组或者单个checkbox的选中状态的值.下面通过一个示例进行说明,假设现有一页面有一组checkbox的name的值为id,那么获取这组name=id的checkbox的值的方 ...
- python module getopt usage
import getopt import sys def usage(): print 'this is a usage.' def main(): try: print sys.argv #sys. ...
- java :hello world
练习java的基本语法. output hellow world. 需求:打包自身项目的bin目录文件为一个临时可运行的jar文件,执行完后删除. 使用process执行jar文件,返回输入流和错误流 ...
- poj2387 Til the Cows Come Home 最短路径dijkstra算法
Description Bessie is out in the field and wants to get back to the barn to get as much sleep as pos ...