LeetCode:Unique Paths I II
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
算法1:最容易想到的是递归解法,uniquePaths(m, n) = uniquePaths(m, n-1) + uniquePaths(m-1, n), 递归结束条件是m或n等于1,这个方法oj超时了
class Solution {
public:
int uniquePaths(int m, int n) {
if(m == || n == )return ;
else return uniquePaths(m, n - ) + uniquePaths(m - , n);
}
};
算法2:动态规划,算法1的递归解法中,其实我们计算了很多重复的子问题,比如计算uniquePaths(4, 5) 和 uniquePaths(5, 3)时都要计算子问题uniquePaths(3, 2),再者由于uniquePaths(m, n) = uniquePaths(n, m),这也使得许多子问题被重复计算了。要保存子问题的状态,这样很自然的就想到了动态规划方法,设dp[i][j] = uniquePaths(i, j), 那么动态规划方程为:
- dp[i][j] = dp[i-1][j] + dp[i][j-1]
- 边界条件:dp[i][1] = 1, dp[1][j] = 1
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > dp(m+, vector<int>(n+, ));
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
dp[i][j] = dp[i-][j] + dp[i][j-];
return dp[m][n];
}
};
上述过程其实是从左上角开始,逐行计算到达每个格子的路线数目,由递推公式可以看出,到达当前格子的路线数目和两个格子有关:1、上一行同列格子的路线数目;2、同一行上一列格子的路线数目。据此我们可以优化上面动态规划方法的空间:
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int>dp(n+, );
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
dp[j] = dp[j] + dp[j-];
return dp[n];
}
};
算法3:其实这个和组合数有关,对于m*n的网格,从左上角走到右下角,总共需要走m+n-2步,其中必定有m-1步是朝右走,n-1步是朝下走,那么这个问题的答案就是组合数:, 这里需要注意的是求组合数时防止乘法溢出 本文地址
class Solution {
public:
int uniquePaths(int m, int n) {
return combination(m+n-, m-);
} int combination(int a, int b)
{
if(b > (a >> ))b = a - b;
long long res = ;
for(int i = ; i <= b; i++)
res = res * (a - i + ) / i;
return res;
}
};
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
这一题可以完全采用和上一题一样的解法,只是需要注意dp的初始化值,和循环的起始值
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[].size();
vector<int>dp(n+, );
dp[] = (obstacleGrid[][] == ) ? : ;
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
if(obstacleGrid[i-][j-] == )
dp[j] = dp[j] + dp[j-];
else dp[j] = ;
return dp[n];
}
};
【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3704091.html
LeetCode:Unique Paths I II的更多相关文章
- LeetCode: Unique Paths I & II & Minimum Path Sum
Title: https://leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m ...
- LeetCode: Unique Paths II 解题报告
Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution Fol ...
- [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )
Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...
- [LeetCode] Unique Paths II 不同的路径之二
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...
- [leetcode]Unique Paths II @ Python
原题地址:https://oj.leetcode.com/problems/unique-paths-ii/ 题意: Follow up for "Unique Paths": N ...
- LEETCODE —— Unique Paths II [Dynamic Programming]
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...
- Leetcode Unique Paths II
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- [Leetcode] unique paths ii 独特路径
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
随机推荐
- javascript的模块化解读
AMD是RequireJS在推广过程中对模块定义的规范化产出. 异步加载模块,依赖前置,提前执行. Define定义模块 define(['require','foo'],function(){ret ...
- class的继承,从基类开始
#include <iostream> #include <stdio.h> using namespace std; class A { public: A() { puts ...
- Netlog 的数据库及 LAMP 架构
Database Sharding@Netlog 详细的描述了 Netlog 数据库架构的演变过程,文章浅显易懂,非常值得学习.本文数据.图片均来自:Database Sharding at Netl ...
- MyCat 学习笔记 第十三篇.数据分片 之 通过HINT执行存储过程
1 环境说明 VM 模拟3台MYSQL 5.6 服务器 VM1 192.168.31.187:3307 VM2 192.168.31.212:3307 VM3 192.168.31.150: 330 ...
- Linux 安装 redis
环境:centos7 参考:http://blog.csdn.net/lk10207160511/article/details/50364088 步骤如下: 安装redis: 打开终端 输入 s ...
- [实践] ubuntu下编译安装ambari
ambari是一个Hadoop套件的管理工具,可以方便部署.管理及监控.最初开发时使用的就是RH系的Linux,只支持RHEL.CentOS5/6.OEL.SLES,暂不支持Ubuntu:可我的需求就 ...
- D_S 线性结构
线性结构的定义:若结构是非空有限集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前驱和一个直接后继. 线性结构的特点: 只有一个首结点和尾结点 除首尾结点外,其他结点只有一个直 ...
- Can't initialize metastore for hive
there maybe many reason to cause this,today our issue is that, if you execute hive –database dbname ...
- USACO section1.2 Transformation
/* ID: vincent63 LANG: C TASK: transform */ #include <stdio.h> #include<stdlib.h> #inclu ...
- 作为一个测试leader平时应该注意哪些方面
平时对管理方面很少有总结,总觉得管理是一门艺术,一门需要意会的艺术,虽然目前在做测试leader,平时也看些管理方面的书,但实际中总感觉理解的不够透彻,在工作上实施的话会有各种各样的情况,想要做好管理 ...