LeetCode:Unique Paths I II
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
算法1:最容易想到的是递归解法,uniquePaths(m, n) = uniquePaths(m, n-1) + uniquePaths(m-1, n), 递归结束条件是m或n等于1,这个方法oj超时了
class Solution {
public:
int uniquePaths(int m, int n) {
if(m == || n == )return ;
else return uniquePaths(m, n - ) + uniquePaths(m - , n);
}
};
算法2:动态规划,算法1的递归解法中,其实我们计算了很多重复的子问题,比如计算uniquePaths(4, 5) 和 uniquePaths(5, 3)时都要计算子问题uniquePaths(3, 2),再者由于uniquePaths(m, n) = uniquePaths(n, m),这也使得许多子问题被重复计算了。要保存子问题的状态,这样很自然的就想到了动态规划方法,设dp[i][j] = uniquePaths(i, j), 那么动态规划方程为:
- dp[i][j] = dp[i-1][j] + dp[i][j-1]
- 边界条件:dp[i][1] = 1, dp[1][j] = 1
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > dp(m+, vector<int>(n+, ));
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
dp[i][j] = dp[i-][j] + dp[i][j-];
return dp[m][n];
}
};
上述过程其实是从左上角开始,逐行计算到达每个格子的路线数目,由递推公式可以看出,到达当前格子的路线数目和两个格子有关:1、上一行同列格子的路线数目;2、同一行上一列格子的路线数目。据此我们可以优化上面动态规划方法的空间:
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int>dp(n+, );
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
dp[j] = dp[j] + dp[j-];
return dp[n];
}
};
算法3:其实这个和组合数有关,对于m*n的网格,从左上角走到右下角,总共需要走m+n-2步,其中必定有m-1步是朝右走,n-1步是朝下走,那么这个问题的答案就是组合数:, 这里需要注意的是求组合数时防止乘法溢出 本文地址
class Solution {
public:
int uniquePaths(int m, int n) {
return combination(m+n-, m-);
} int combination(int a, int b)
{
if(b > (a >> ))b = a - b;
long long res = ;
for(int i = ; i <= b; i++)
res = res * (a - i + ) / i;
return res;
}
};
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
这一题可以完全采用和上一题一样的解法,只是需要注意dp的初始化值,和循环的起始值
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[].size();
vector<int>dp(n+, );
dp[] = (obstacleGrid[][] == ) ? : ;
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
if(obstacleGrid[i-][j-] == )
dp[j] = dp[j] + dp[j-];
else dp[j] = ;
return dp[n];
}
};
【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3704091.html
LeetCode:Unique Paths I II的更多相关文章
- LeetCode: Unique Paths I & II & Minimum Path Sum
Title: https://leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m ...
- LeetCode: Unique Paths II 解题报告
Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution Fol ...
- [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )
Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...
- [LeetCode] Unique Paths II 不同的路径之二
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...
- [leetcode]Unique Paths II @ Python
原题地址:https://oj.leetcode.com/problems/unique-paths-ii/ 题意: Follow up for "Unique Paths": N ...
- LEETCODE —— Unique Paths II [Dynamic Programming]
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...
- Leetcode Unique Paths II
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- [Leetcode] unique paths ii 独特路径
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
随机推荐
- This is usually caused by using Struts tags without the associated filter. Struts tags are only usable when the request has p
2014-09-16 15:47:51.590:WARN:oejs.ErrorPageErrorHandler:EXCEPTION org.apache.jasper.JasperException: ...
- CentOS6.5安装mysql5.1.73
思路: 1.查看有无安装过mysql rpm -qa|grep mysql
- 一步步学敏捷开发:6、Scrum的3种工件
Scrum的3种工件包括:Product Blacklog.Sprint Backlog.完成标准. 1.产品待办事项列表(Product Backlog) 产品Blacklog是Scrum中的核心工 ...
- JavaScript Patterns 3.6 Regular Expression Literal
1. Using the new RegExp() constructor // constructor var re = new RegExp("\\\\", "gm& ...
- WP开发-Toolkit组件 列表采集器(ListPicker)的使用
列表采集器ListPicker在作用上与html中的<select/>标签一样 都是提供多选一功能,区别在于ListPicker可以自定义下拉状态和非下拉状态的样式. 1.模板设置 Lis ...
- 读书笔记——Windows环境下32位汇编语言程序设计(3)一些基础知识
声明函数用proto 定义函数用proc 局部变量只能定义,不能赋初值,类型不能用缩写. 全局变量可以定义的时候赋初值,默认值为0. 在invoke中,参数可以使用addr取址. sizeof 字节长 ...
- PL/SQL之--触发器
一.简介 触发器在数据库里以独立的对象进行存储,它与存储过程和函数不同的是,存储过程与函数需要用户显示调用才执行,而触发器是由一个事件来触发运行.oracle事件指的是对数据库的表或视图进行的inse ...
- which,whereis, locate, find
which 在PATH环境变量中的路径中查找目标文件,所以用来查找都是可执行文件,Linux下的各种命令本质上就是一个可执行的文件,所以我们安装新的软件之后通常都会有相应的命令将其打开,就是因为安装的 ...
- 排序(qsort sort的使用)
前情:因平常写代码是常将比较函数弄混(写好了排序还要确认一下-.-!),还是写篇博客,方便以后查阅 C语言qsort函数对int类型数组排序: #include "stdio.h" ...
- hdu 3367 Pseudoforest(最大生成树)
Pseudoforest Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) To ...