Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

算法1:最容易想到的是递归解法,uniquePaths(m, n) = uniquePaths(m, n-1) + uniquePaths(m-1, n), 递归结束条件是m或n等于1,这个方法oj超时了

 class Solution {
public:
int uniquePaths(int m, int n) {
if(m == || n == )return ;
else return uniquePaths(m, n - ) + uniquePaths(m - , n);
}
};

算法2:动态规划,算法1的递归解法中,其实我们计算了很多重复的子问题,比如计算uniquePaths(4, 5) 和 uniquePaths(5, 3)时都要计算子问题uniquePaths(3, 2),再者由于uniquePaths(m, n) = uniquePaths(n, m),这也使得许多子问题被重复计算了。要保存子问题的状态,这样很自然的就想到了动态规划方法,设dp[i][j] = uniquePaths(i, j), 那么动态规划方程为:

  • dp[i][j] = dp[i-1][j] + dp[i][j-1]
  • 边界条件:dp[i][1] = 1, dp[1][j] = 1
 class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > dp(m+, vector<int>(n+, ));
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
dp[i][j] = dp[i-][j] + dp[i][j-];
return dp[m][n];
}
};

上述过程其实是从左上角开始,逐行计算到达每个格子的路线数目,由递推公式可以看出,到达当前格子的路线数目和两个格子有关:1、上一行同列格子的路线数目;2、同一行上一列格子的路线数目。据此我们可以优化上面动态规划方法的空间:

 class Solution {
public:
int uniquePaths(int m, int n) {
vector<int>dp(n+, );
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
dp[j] = dp[j] + dp[j-];
return dp[n];
}
};

算法3:其实这个和组合数有关,对于m*n的网格,从左上角走到右下角,总共需要走m+n-2步,其中必定有m-1步是朝右走,n-1步是朝下走,那么这个问题的答案就是组合数:, 这里需要注意的是求组合数时防止乘法溢出        本文地址

 class Solution {
public:
int uniquePaths(int m, int n) {
return combination(m+n-, m-);
} int combination(int a, int b)
{
if(b > (a >> ))b = a - b;
long long res = ;
for(int i = ; i <= b; i++)
res = res * (a - i + ) / i;
return res;
}
};

Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

这一题可以完全采用和上一题一样的解法,只是需要注意dp的初始化值,和循环的起始值

 class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[].size();
vector<int>dp(n+, );
dp[] = (obstacleGrid[][] == ) ? : ;
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
if(obstacleGrid[i-][j-] == )
dp[j] = dp[j] + dp[j-];
else dp[j] = ;
return dp[n];
}
};

【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3704091.html

LeetCode:Unique Paths I II的更多相关文章

  1. LeetCode: Unique Paths I & II & Minimum Path Sum

    Title: https://leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m  ...

  2. LeetCode: Unique Paths II 解题报告

    Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution  Fol ...

  3. [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )

    Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...

  4. [LeetCode] Unique Paths II 不同的路径之二

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  5. LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  6. [leetcode]Unique Paths II @ Python

    原题地址:https://oj.leetcode.com/problems/unique-paths-ii/ 题意: Follow up for "Unique Paths": N ...

  7. LEETCODE —— Unique Paths II [Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  8. Leetcode Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  9. [Leetcode] unique paths ii 独特路径

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

随机推荐

  1. javascript的模块化解读

    AMD是RequireJS在推广过程中对模块定义的规范化产出. 异步加载模块,依赖前置,提前执行. Define定义模块 define(['require','foo'],function(){ret ...

  2. class的继承,从基类开始

    #include <iostream> #include <stdio.h> using namespace std; class A { public: A() { puts ...

  3. Netlog 的数据库及 LAMP 架构

    Database Sharding@Netlog 详细的描述了 Netlog 数据库架构的演变过程,文章浅显易懂,非常值得学习.本文数据.图片均来自:Database Sharding at Netl ...

  4. MyCat 学习笔记 第十三篇.数据分片 之 通过HINT执行存储过程

    1 环境说明 VM 模拟3台MYSQL 5.6 服务器 VM1 192.168.31.187:3307 VM2 192.168.31.212:3307 VM3 192.168.31.150:  330 ...

  5. Linux 安装 redis

      环境:centos7 参考:http://blog.csdn.net/lk10207160511/article/details/50364088 步骤如下: 安装redis: 打开终端 输入 s ...

  6. [实践] ubuntu下编译安装ambari

    ambari是一个Hadoop套件的管理工具,可以方便部署.管理及监控.最初开发时使用的就是RH系的Linux,只支持RHEL.CentOS5/6.OEL.SLES,暂不支持Ubuntu:可我的需求就 ...

  7. D_S 线性结构

    线性结构的定义:若结构是非空有限集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前驱和一个直接后继. 线性结构的特点: 只有一个首结点和尾结点 除首尾结点外,其他结点只有一个直 ...

  8. Can't initialize metastore for hive

    there maybe many reason to cause this,today our issue is that, if you execute hive –database dbname ...

  9. USACO section1.2 Transformation

    /* ID: vincent63 LANG: C TASK: transform */ #include <stdio.h> #include<stdlib.h> #inclu ...

  10. 作为一个测试leader平时应该注意哪些方面

    平时对管理方面很少有总结,总觉得管理是一门艺术,一门需要意会的艺术,虽然目前在做测试leader,平时也看些管理方面的书,但实际中总感觉理解的不够透彻,在工作上实施的话会有各种各样的情况,想要做好管理 ...