LeetCode:Unique Paths I II
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
算法1:最容易想到的是递归解法,uniquePaths(m, n) = uniquePaths(m, n-1) + uniquePaths(m-1, n), 递归结束条件是m或n等于1,这个方法oj超时了
class Solution {
public:
int uniquePaths(int m, int n) {
if(m == || n == )return ;
else return uniquePaths(m, n - ) + uniquePaths(m - , n);
}
};
算法2:动态规划,算法1的递归解法中,其实我们计算了很多重复的子问题,比如计算uniquePaths(4, 5) 和 uniquePaths(5, 3)时都要计算子问题uniquePaths(3, 2),再者由于uniquePaths(m, n) = uniquePaths(n, m),这也使得许多子问题被重复计算了。要保存子问题的状态,这样很自然的就想到了动态规划方法,设dp[i][j] = uniquePaths(i, j), 那么动态规划方程为:
- dp[i][j] = dp[i-1][j] + dp[i][j-1]
- 边界条件:dp[i][1] = 1, dp[1][j] = 1
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int> > dp(m+, vector<int>(n+, ));
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
dp[i][j] = dp[i-][j] + dp[i][j-];
return dp[m][n];
}
};
上述过程其实是从左上角开始,逐行计算到达每个格子的路线数目,由递推公式可以看出,到达当前格子的路线数目和两个格子有关:1、上一行同列格子的路线数目;2、同一行上一列格子的路线数目。据此我们可以优化上面动态规划方法的空间:
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int>dp(n+, );
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
dp[j] = dp[j] + dp[j-];
return dp[n];
}
};
算法3:其实这个和组合数有关,对于m*n的网格,从左上角走到右下角,总共需要走m+n-2步,其中必定有m-1步是朝右走,n-1步是朝下走,那么这个问题的答案就是组合数:, 这里需要注意的是求组合数时防止乘法溢出 本文地址
class Solution {
public:
int uniquePaths(int m, int n) {
return combination(m+n-, m-);
}
int combination(int a, int b)
{
if(b > (a >> ))b = a - b;
long long res = ;
for(int i = ; i <= b; i++)
res = res * (a - i + ) / i;
return res;
}
};
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
这一题可以完全采用和上一题一样的解法,只是需要注意dp的初始化值,和循环的起始值
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[].size();
vector<int>dp(n+, );
dp[] = (obstacleGrid[][] == ) ? : ;
for(int i = ; i <= m; i++)
for(int j = ; j <= n; j++)
if(obstacleGrid[i-][j-] == )
dp[j] = dp[j] + dp[j-];
else dp[j] = ;
return dp[n];
}
};
【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3704091.html
LeetCode:Unique Paths I II的更多相关文章
- LeetCode: Unique Paths I & II & Minimum Path Sum
Title: https://leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m ...
- LeetCode: Unique Paths II 解题报告
Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution Fol ...
- [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )
Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...
- [LeetCode] Unique Paths II 不同的路径之二
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...
- [leetcode]Unique Paths II @ Python
原题地址:https://oj.leetcode.com/problems/unique-paths-ii/ 题意: Follow up for "Unique Paths": N ...
- LEETCODE —— Unique Paths II [Dynamic Programming]
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...
- Leetcode Unique Paths II
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- [Leetcode] unique paths ii 独特路径
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
随机推荐
- 关于EntityFramework在vs2012无法引用的问题
这段时间学习MVC,发现一个问题,我公司的电脑可以直接引用EntityFrameWork这个命名空间,但我家里面的电脑就不能直接引用,刚开始以为是我电脑配置问题,后重装电脑,发现问题并没有解决. 今天 ...
- 关于String StringBuffer StringBuilder
0. String对象的创建 1.关于类对象的创建,很普通的一种方式就是利用构造器,String类也不例外:String s=new String("Hello world&qu ...
- OS X下安装Redis及配置开机启动
1.下载redis源码包redis-3.0.5.tar(此步骤可在图形界面下操作) 2.解压源码包 tar zxvf redis-3.0.5.tar 3.编译源码并安装 #进入源码目录 cd redi ...
- 枚举Enumerations
枚举,类似于数据库中的表. 难点:实例值和原始值. import Foundation enum Sex{ case Male(Int,Int) case Female(String) } var b ...
- powerdesigner设置表主键列为自动增长
powerdesigner 版本12.5 创建表就不说了.下面开始介绍设置自动增长列. 1 在表视图的列上创建.双击表视图,打开table properties ———>columens ,双击 ...
- TCP连接与关闭
1.建立连接协议(三次握手) (1)客户端发送一个带SYN标志的TCP报文到服务器.这是三次握手过程中的报文1. (2) 服务器端回应客户端的,这是三次握手中的第2个报文,这个报文同时带ACK标志和S ...
- 如何去设计一个自适应的网页设计或HTMl5
如何去设计一个自适应的网页设计或HTMl5 如今移动互联网随着3G的普及,越来越火爆,更多需求跟随而来!APP应用市场和APP应用数量成倍成倍的增长!从而给移动互联网带来新的挑战! 移动设备正超过桌面 ...
- NOIP2008 普及组T4 立体图 解题报告-S.B.S.(施工未完成)
题目描述 小渊是个聪明的孩子,他经常会给周围的小朋友们将写自己认为有趣的内容.最近,他准备给小朋友们讲解立体图,请你帮他画出立体图. 小渊有一块面积为m*n的矩形区域,上面有m*n个边长为1的格子,每 ...
- NOIP2008普及组传球游戏(动态规划)——yhx
题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同 ...
- 边工作边刷题:70天一遍leetcode: day 84
Flatten 2D Vector 要点: 这题是2d的iterator,一般对于1d的情况,hasNext()是不需要做移动的.而2d不同,core iterator是j向的,而i向要在hasNex ...