题意:有两种类型的砝码,每种的砝码质量a和b给你,现在要求称出质量为c的物品,要求a的数量x和b的数量y最小,以及x+y的值最小。

用扩展欧几里德求ax+by=c,求出ax+by=1的一组通解,求出当x取最小合法正整数解时y的取值,当y小于0时,说明应该放在a的另一边,变为正值。同理当y取最小时,可得到另一组解,比较两组解,取最小即可。

#include<stdio.h>
int ex_gcd(int a,int b,int &x,int &y){
if(!b){
x=,y=;
return a;
}
int ans=ex_gcd(b,a%b,y,x);
y-=a/b*x;
return ans;
}
void cal(int a,int b,int c){
int x,y,xx,yy;
int d=ex_gcd(a,b,x,y);
xx=x,yy=y;
a/=d,b/=d,c/=d;
x=((x*c)%b+b)%b;
y=(c-a*x)/b;
if(y<) y=-y;
yy=((yy*c)%a+a)%a;
xx=(c-b*yy)/a;
if(xx<) xx=-xx;
if(x+y>xx+yy) x=xx,y=yy;
printf("%d %d\n",x,y);
}
int main(){
int a,b,c;
while(~scanf("%d%d%d",&a,&b,&c)){
if(!a&&!b&&!c) break;
cal(a,b,c);
}
return ;
}

POJ 2142 The Balance【扩展欧几里德】的更多相关文章

  1. POJ 2142 - The Balance [ 扩展欧几里得 ]

    题意: 给定 a b n找到满足ax+by=n 的x,y 令|x|+|y|最小(等时令a|x|+b|y|最小) 分析: 算法一定是扩展欧几里得. 最小的时候一定是 x 是最小正值 或者 y 是最小正值 ...

  2. POJ.2142 The Balance (拓展欧几里得)

    POJ.2142 The Balance (拓展欧几里得) 题意分析 现有2种质量为a克与b克的砝码,求最少 分别用多少个(同时总质量也最小)砝码,使得能称出c克的物品. 设两种砝码分别有x个与y个, ...

  3. POJ - 2142 The Balance(扩展欧几里得求解不定方程)

    d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...

  4. POJ2142 The Balance (扩展欧几里德)

    本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia The Balance 题目大意  你有一个天平(天平左右两边都可以放砝码)与重量为a,b(1<= ...

  5. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  6. POJ 2142 The Balance (解不定方程,找最小值)

    这题实际解不定方程:ax+by=c只不过题目要求我们解出的x和y 满足|x|+|y|最小,当|x|+|y|相同时,满足|ax|+|by|最小.首先用扩展欧几里德,很容易得出x和y的解.一开始不妨令a& ...

  7. poj2142 The Balance 扩展欧几里德的应用 稍微还是有点难度的

    题目意思一开始没理解,原来是 给你重为a,b,的砝码 求测出 重量为d的砝码,a,b砝码可以无限量使用 开始时我列出来三个方程 : a*x+b*y=d; a*x-b*y=d; b*y-ax=d; 傻眼 ...

  8. poj 2115 C Looooops 扩展欧几里德

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23616   Accepted: 6517 Descr ...

  9. POJ-2142 The Balance 扩展欧几里德(+绝对值和最小化)

    题目链接:https://cn.vjudge.net/problem/POJ-2142 题意 自己看题吧,懒得解释 思路 第一部分就是扩展欧几里德 接下来是根据 $ x=x_0+kb', y=y_0- ...

随机推荐

  1. 研究jdk关于TreeMap 红黑树算法实现

    因为TreeMap的实现方式是用红黑树这种数据结构进行存储的,所以呢我主要通过分析红黑树的实现在看待TreeMap,侧重点也在于如何实现红黑树,因为网上已经有非常都的关于红黑树的实现.我也看了些,但是 ...

  2. C# 分支语句

    选择语句 if,else if是如果的意思,else是另外的意思,if后面跟()括号内为判断条件,如果符合条件则进入if语句执行命令.如果不符合则不进入if语句.else后不用加条件,但是必须与if配 ...

  3. VS2010在空解决方案中添加项目

    如题,在空解决方案中添加第一个项目的时候会看不到那个solution解决方案文件,而是你当前添加的项目,当你再添加其他项目的时候就悲催了,找不到这个solution,只能在这个项目文件上新加文件,很郁 ...

  4. ABAP:区别CALL SCREEN/SET SCREEN/LEAVE TO SCREEN

    1,CALL SCREEN XXXX将在Screen调用栈(CALL STACK)上面添加一层调用(进栈),调用XXXX的PBO和PAI,如果XXXX的Next Screen不为0,那么将继续其Nex ...

  5. SQL2012 提示评估已过期 解决方案- sql server问题

    SQL2012 提示评估已过期 解决方案提示评估已过期的解决方法和 sql2008一样 第1步:进入SQL2012配置工具中的安装中心第2步:再进入维护界面,选择版本升级第3步:进入产品密钥,输入密钥 ...

  6. 3.0之后在LinearLayout里增加分割线

    android:divider="@drawable/shape"<!--分割线图片--> android:showDividers="middle|begi ...

  7. Linux useful command

    查看linux系统里面的各个目录.文件夹的大小和使用情况, 先切换到需要查看的目录,如果需要查看所有linux目录的使用情况就直接切换到系统跟目录,然后执行: du -h --max-depth=1 ...

  8. iOS之 PJSIP静态库编译(三)

    dada哪个所有静态库编译完成后还是不能运行那个demo,提示你找不到arm**.a 你lipo后要记得吧合并成.a  名字更改成你最后编译版本生成的.a名字....... 或者吧所有库add到你的工 ...

  9. iOS开发之网络数据解析(二)--XML解析简介

    前言:本篇随笔介绍的是XML解析. 正文: 1.XML解析方式有2两种: DOM:一次性将整个XML数据加载进内存进行解析,比较适合解析小文件 SAX:从根元素开始,按顺序一个元素一个元素往下解析,比 ...

  10. Objective-C之@类别小实例

    *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !important; } ...