原文:http://www.cnblogs.com/rain-lei/p/3622057.html

函数调用大家都不陌生,调用者向被调用者传递一些参数,然后执行被调用者的代码,最后被调用者向调用者返回结果,还有大家比较熟悉的一句话,就是函数调用是在栈上发生的,那么在计算机内部到底是如何实现的呢?
 
对于程序,编译器会对其分配一段内存,在逻辑上可以分为代码段,数据段,堆,栈
代码段:保存程序文本,指令指针EIP就是指向代码段,可读可执行不可写
数据段:保存初始化的全局变量和静态变量,可读可写不可执行
BSS:未初始化的全局变量和静态变量
堆(Heap):动态分配内存,向地址增大的方向增长,可读可写可执行
栈(Stack):存放局部变量,函数参数,当前状态,函数调用信息等,向地址减小的方向增长,非常非常重要,可读可写可执行
如图所示
寄存器
EAX:累加(Accumulator)寄存器,常用于函数返回值
EBX:基址(Base)寄存器,以它为基址访问内存
ECX:计数器(Counter)寄存器,常用作字符串和循环操作中的计数器
EDX:数据(Data)寄存器,常用于乘除法和I/O指针
ESI:源变址寄存器
DSI:目的变址寄存器
ESP:堆栈(Stack)指针寄存器,指向堆栈顶部
EBP:基址指针寄存器,指向当前堆栈底部
EIP:指令寄存器,指向下一条指令的地址
源代码
int print_out(int begin, int end)
{
printf("%d ", begin++);
int *p;
p = (int*)(int(&begin) - 4);
if(begin <= end)
*p -= 5;
return 1;
} int add(int a, int b)
{
return a+b;
} int pass(int a, int b, int c) {
char buffer[4] = {0};
int sum = 0;
int *ret;
ret = (int*)(buffer+28);
//(*ret) += 0xA;
sum = a + b + c;
return sum;
} int main()
{
print_out(0, 2);
printf("\n");
int a = 1;
int b = 2;
int c;
c = add(a, b);
pass(a, b, c);
int __sum;
__asm
{
mov __sum, eax
}
printf("%d\n", __sum);
system("pause");
}
函数初始化
  28: int main()
29: {
011C1540 push ebp //压栈,保存ebp,注意push操作隐含esp-4
011C1541 mov ebp,esp //把esp的值传递给ebp,设置当前ebp
011C1543 sub esp,0F0h //给函数开辟空间,范围是(ebp, ebp-0xF0)
011C1549 push ebx
011C154A push esi
011C154B push edi
011C154C lea edi,[ebp-0F0h] //把edi赋值为ebp-0xF0
011C1552 mov ecx,3Ch //函数空间的dword数目,0xF0>>2 = 0x3C
011C1557 mov eax,0CCCCCCCCh
011C155C rep stos dword ptr es:[edi]
//rep指令的目的是重复其上面的指令.ECX的值是重复的次数.
//STOS指令的作用是将eax中的值拷贝到ES:EDI指向的地址,然后EDI+4
一般所用函数的开头都会有这段命令,完成了状态寄存器的保存,堆栈寄存器的保存,函数内存空间的初始化
函数调用
 30: print_out(0, 2);
013D155E push 2 //第二个实参压栈
013D1560 push 0 //第一个实参压栈
013D1562 call print_out (13D10FAh)//返回地址压栈,本例中是013D1567,然后调用print_out函数
013D1567 add esp,8 //两个实参出栈
//注意在call命令中,隐含操作是把下一条指令的地址压栈,也就是所谓的返回地址
 
除了VS可能增加一些安全性检查外,print_out的初始化与main函数的初始化完全相同
 
被调用函数返回
013D141C mov eax,1  //返回值传入eax中
013D1421 pop edi
013D1422 pop esi
013D1423 pop ebx //寄存器出栈
013D1424 add esp,0D0h //以下3条命令是调用VS的__RTC_CheckEsp,检查栈溢出
013D142A cmp ebp,esp
013D142C call @ILT+315(__RTC_CheckEsp) (13D1140h)
013D1431 mov esp,ebp //ebp的值传给esp,也就是恢复调用前esp的值
013D1433 pop ebp //弹出ebp,恢复ebp的值
013D1434 ret //把返回地址写入EIP中,相当于pop EIP
call指令隐含操作push EIP,ret指令隐含操作 pop EIP,两条指令完全对应起来 
写到这里我们就可以分析一下main函数调用print_out函数前后堆栈(Stack)发生了什么变化,下面用一系列图说明
 
  
接下来是返回过程,从上面的013D1431 行代码开始
    
 
   
 
print_out函数调用前后,main函数的栈帧完全一样,perfect!
下面我们来看看print_out函数到底做了什么事情
int *p;
p = (int*)(int(&begin) - 4);
if(begin <= end)
*p -= 5;
根据上面调用print_out函数后的示意图,可以知道p实际上是指向了函数的返回地址addr,然后把addr-5,这又会发生什么?
再回头看一下反汇编的代码,
013D1560 push 0 //第一个实参压栈
013D1562 call print_out (13D10FAh)//返回地址压栈,本例中是013D1567,然后调用print_out函数
013D1567 add esp,8 //两个实参出栈
分析可知,返回地址addr的值是013D1567 ,addr-5为013D1562 ,把返回地址指向了call指令,结果是再次调用print_out函数,
从而print_out函数实现了打印从begin到end之间的所有数字,可以说是循环调用了print_out函数
 
对于add函数,主要是为了说明返回值存放于寄存器eax中。
 
另外,VS自身会提供一些安全检查
CheckStackVar安全检查http://blog.csdn.net/masefee/article/details/5630154,通过ecx和edx传递参数, 局部变量有数组时使用
__security_check_cookie返回地址检查, 数组长度大于等于5时使用
__RTC_CheckEsp程序栈检查,printf函数用使用
 

【.NET进阶】函数调用--函数栈的更多相关文章

  1. c函数调用过程原理及函数栈帧分析

    转载自地址:http://blog.csdn.net/zsy2020314/article/details/9429707       今天突然想分析一下函数在相互调用过程中栈帧的变化,还是想尽量以比 ...

  2. 谈谈arm下的函数栈

    引言 这篇文章简要说说函数是怎么传入参数的,我们都知道,当一个函数调用使用少量参数(ARM上是少于等于4个)时,参数是通过寄存器进行传值(ARM上是通过r0,r1,r2,r3),而当参数多于4个时,会 ...

  3. C函数调用与栈--代码真相

    前面详细的说了,C函数调用的过程中,栈的变化情况的原理部分,这里在看一下汇编代码的真正的实现. 有关前面的那一片博客,主要记住的就是函数调用时栈的变化,4+3+2的步骤: (1)设置栈帧边界 (2)开 ...

  4. C函数调用与栈

    这篇blog试图说明这么一个问题,当一个c函数被调用时,一个栈帧(stack frame)是如何被建立,又如何被消除的.这些细节跟操作系统平台及编译器的实现有关,下面的描述是针对运行在Linux的gc ...

  5. C++_进阶之函数模板_类模板

     C++_进阶之函数模板_类模板 第一部分 前言 c++提供了函数模板(function template.)所谓函数模板,实际上是建立一个通用函数,其函数类型和形参类型不具体制定,用一个虚拟的类型来 ...

  6. python函数进阶(函数参数、返回值、递归函数)

    函数进阶 目标 函数参数和返回值的作用 函数的返回值 进阶 函数的参数 进阶 递归函数 01. 函数参数和返回值的作用 函数根据 有没有参数 以及 有没有返回值,可以 相互组合,一共有 4 种 组合形 ...

  7. C语言函数调用及栈帧结构

    source:http://blog.csdn.net/qq_29403077/article/details/53205010 一.地址空间与物理内存 (1)地址空间与物理内存是两个完全不同的概念, ...

  8. Python进阶(一)----函数

    Python进阶(一)----函数初识 一丶函数的初识 什么函数: ​ 函数是以功能为导向.一个函数封装一个功能 函数的优点: ​ 1.减少代码的重复性, ​ 2.增强了代码的可读性 二丶函数的结构 ...

  9. golang defer 以及 函数栈和return

    defer 作为延迟函数存在,在函数执行结束时才会正式执行,一般用于资源释放等操作 参考一段代码https://mp.weixin.qq.com/s/yfH0CBnUBmH0oxfC2evKBA来分析 ...

随机推荐

  1. ArcObject10.1降级至10.0

    最开始接触ArcGIS版本是9.3,为了需要也安装了9.2进行开发:因为自己的电脑配置较低,所以跑不起10.0中文版:毕业工作后,行业内用10.1居多(虽然10.3已出):现在10.4都要出来了:由于 ...

  2. Win7 64位下sql server链接oracle的方法

    继上一次mysql同步sql server后,这一次需要将Oracle同步到sql server上来,方案相似,只是在sql server链接oracle的时候费了很多时间. 一.测试环境 本方案实现 ...

  3. The system clock has been set back more than 24 hours

    由于破解调试需要,更改了系统时间,打开ArcMap会出现"The system clock has been set back more than 24 hours"的错误,原因是 ...

  4. Android 开关按钮切换,类似于iphone 效果,view实现

    1.实现的效果 gitHub :  https://github.com/zcweng/ToggleButton

  5. STL--双端队列(deque)和链表(list)

    双端队列(deque容器类): #include<deque>与vector 类似,支持随机访问和快速插入删除,它在容器中某一位置上的操作所花费的是线性时间. 与vector不同的是:de ...

  6. iOS 公司开发者账号申请

    苹果开发者账号分三种. 个人账号:个人申请用于开发苹果app所使用的账号,仅限于个人使用,申请比较容易,$99. 公司账号:以公司的名义申请的开发者账号,用于公司内部的开发者共用,$99. 企业账号: ...

  7. 解决springmvc中文件下载功能中使用javax.servlet.ServletOutputStream out = response.getOutputStream();后运行出异常但结果正确的问题

    问题描述: 在springmvc中实现文件下载功能一般都会使用javax.servlet.ServletOutputStream out = response.getOutputStream();封装 ...

  8. leangoo更换背景、设置颜色标签功能上线啦!

    leangoo看板背景太单调?卡片标签想要添加多个?没有问题,Leangoo的本次更新就给大家带来了漂亮背景和实用的颜色标签设置,接下来就让我们一起来看看吧! 设置背景: 点击看板右上角个人头像图标按 ...

  9. PowerVault TL4000 Tape Library 告警:“Media Attention”

      Dell PowerVault TL4000 磁带库机的指示灯告警,从Web管理平台登录后,在菜单"Library Status"下发现如下告警信息:  Library Sta ...

  10. JodaTime library not available - @DateTimeFormat not supported

    使用spring的@DateTimeFormat来格式化Date类型时,报错: org.springframework.validation.BindException: org.springfram ...