拉格朗日乘子法和KKT条件
拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解。
对于无约束最优化问题,有很多经典的求解方法,参见无约束最优化方法。
拉格朗日乘子法
先来看拉格朗日乘子法是什么,再讲为什么。
$\min\;f(x)\\s.t.\;h_{i}(x)=0\;\;\;\;i=1,2...,n$
这个问题转换为
\begin{equation}min\;[f(x)+\sum_{i=1}^{n}\lambda_{i}h_{i}(x)]\label{lagrange}\end{equation}
其中$\lambda_{i}\ne{0}$,称为拉格朗日乘子。
下面看一下wikipedia上是如何解释拉格朗日乘子法的合理性的。
现有一个二维的优化问题:
$\min\;f(x,y)\\s.t.\;g(x,y)=c$
我们可以画图来辅助思考。
绿线标出的是约束$g(x,y)=c$的点的轨迹。蓝线是$f(x,y)$的等高线。箭头表示斜率,和等高线的法线平行。
从图上可以直观地看到在最优解处,f和g的斜率平行。
$\bigtriangledown[f(x,y)+\lambda(g(x,y)-1)]=0\;\;\;\;\lambda\ne{0}$
一旦求出$\lambda$的值,将其套入下式,易求在无约束极值和极值所对应的点。
$F(x,y)=f(x,y)+\lambda(g(x,y)-c)$
新方程$F(x,y)$在达到极值时与$f(x,y)$相等,因为$F(x,y)$达到极值时$g(x,y)-c$总等于零。
\eqref{lagrange}取得极小值时其导数为0,即$\bigtriangledown{f(x)}+\bigtriangledown{\sum_{i=1}^{n}\lambda_{i}h_{i}(x)}=0$,也就是说$f(x)$和$h(x)$的梯度共线。
KKT条件
先看KKT条件是什么,再讲为什么。
$\begin{equation}let\;L(x,\mu)=f(x)+\sum_{k=1}^q\mu_{k}g_{k}(x)\end{equation}$
其中$\mu_{k}\ge{0},g_{k}(x)\le{0}$
$\because \left.\begin{matrix}\mu_{k}\ge{0}\\g_{k}(x)\le{0}\end{matrix}\right\}$=>$\mu{g(x)}\le{0}$
$\therefore$ \begin{equation}\max_{\mu}L(x,\mu)=f(x)\label{a}\end{equation}
$\therefore$\begin{equation}\min_{x}f(x)=\min_{x}\max_{\mu}L(x,\mu)\label{firsthalf}\end{equation}
$\max_{\mu}\min_{x}L(x,\mu)=\max_{\mu}[\min_{x}f(x)+\min_{x}\mu{g(x)}]=\max_{\mu}\min_{x}f(x)+\max_{\mu}\min_{x}\mu{g(x)}=\min_{x}f(x)+\max_{\mu}\min_{x}\mu{g(x)}$
又$\because\left.\begin{matrix}\mu_{k}\ge{0}\\g_{k}(x)\le{0}\end{matrix}\right\}$=>$\min_{x}\mu{g(x)}=\left\{\begin{matrix}0 & if\;\mu=0\;or\;g(x)=0\\ -\infty & if\;\mu>0\;and\;g(x)<0\end{matrix}\right.$
$\therefore \max_{\mu}\min_{x}\mu{g(x)}=0$此时$\mu=0\;or\;g(x)=0$
\begin{equation}\therefore \max_{\mu}\min_{x}L(x,\mu)=\min_{x}f(x)+\max_{\mu}\min_{x}\mu{g(x)}=\min_{x}f(x)\label{secondhalf}\end{equation}此时$\mu=0\;or\;g(x)=0$
联合\eqref{firsthalf},\eqref{secondhalf}我们得到$\min_{x}\max_{\mu}L(x,\mu)=\max_{\mu}\min_{x}L(x,\mu)$
亦即$\left.\begin{matrix}L(x,\mu)=f(x)+\sum_{k=1}^q\mu_{k}g_{k}(x)\\\mu_{k}\ge{0}\\g_{k}(x)\le{0}\end{matrix}\right\}$=>$\min_{x}\max_{\mu}L(x,\mu)=\max_{\mu}\min_{x}L(x,\mu)=\min_{x}f(x)$
我们把$\max_{\mu}\min_{x}L(x,\mu)$称为原问题$\min_{x}\max_{\mu}L(x,\mu)$的对偶问题,上式表明当满足一定条件时原问题、对偶的解、以及$\min_{x}f(x)$是相同的,且在最优解$x^*$处$\mu=0\;or\;g(x^*)=0$。把$x^*$代入\eqref{a}得$\max_{\mu}L(x^*,\mu)=f(x^*)$,由\eqref{secondhalf}得$\max_{\mu}\min_{x}L(x,\mu)=f(x^*)$,所以$L(x^*,\mu)=\min_{x}L(x,\mu)$,这说明$x^*$也是$L(x,\mu)$的极值点,即$\frac{\partial{L(x,\mu)}}{\partial{x}}|_{x=x^*}=0$。
最后总结一下:
$\left.\begin{matrix}L(x,\mu)=f(x)+\sum_{k=1}^q\mu_{k}g_{k}(x)\\\mu_{k}\ge{0}\\g_{k}(x)\le{0}\end{matrix}\right\}$=>$\left\{\begin{matrix}\min_{x}\max_{\mu}L(x,\mu)=\max_{\mu}\min_{x}L(x,\mu)=\min_{x}f(x)=f(x^*)\\\mu_{k}{g_{k}(x^*)=0}\\\frac{\partial{L(x,\mu)}}{\partial{x}}|_{x=x^*}=0\end{matrix}\right.$
KKT条件是拉格朗日乘子法的泛化,如果我们把等式约束和不等式约束一并纳入进来则表现为:
$\left.\begin{matrix}L(x,\lambda,\mu)=f(x)+\sum_{i=1}^{n}\lambda_{i}h_{i}(x)+\sum_{k=1}^q\mu_{k}g_{k}(x)\\\lambda_{i}\ne{0}\\h_{i}(x)=0\\\mu_{k}\ge{0}\\g_{k}(x)\le{0}\end{matrix}\right\}$=>$\left\{\begin{matrix}\min_{x}\max_{\mu}L(x,\lambda,\mu)=\max_{\mu}\min_{x}L(x,\lambda,\mu)=\min_{x}f(x)=f(x^*)\\\mu_{k}{g_{k}(x^*)=0}\\\frac{\partial{L(x,\lambda,\mu)}}{\partial{x}}|_{x=x^*}=0\end{matrix}\right.$
注:$x,\lambda,\mu$都是向量。
$\frac{\partial{L(x,\lambda,\mu)}}{\partial{x}}|_{x=x^*}=0$表明$f(x)$在极值点$x^*$处的梯度是各个$h_{i}(x^*)$和$g_{k}(x^*)$梯度的线性组合。
转载 http://www.cnblogs.com/zhangchaoyang/articles/2726873.html
拉格朗日乘子法和KKT条件的更多相关文章
- 关于拉格朗日乘子法和KKT条件
解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报 分类: 模式识别&机器学习(42 ...
- 真正理解拉格朗日乘子法和 KKT 条件
这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容. 首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: \[min \quad f(x)\] 如 ...
- 机器学习笔记——拉格朗日乘子法和KKT条件
拉格朗日乘子法是一种寻找多元函数在一组约束下的极值方法,通过引入拉格朗日乘子,可将有m个变量和n个约束条件的最优化问题转化为具有m+n个变量的无约束优化问题.在介绍拉格朗日乘子法之前,先简要的介绍一些 ...
- 重温拉格朗日乘子法和KKT条件
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...
- 第99:真正理解拉格朗日乘子法和 KKT 条件
- 拉格朗日乘子法&KKT条件
朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件.前 ...
- 拉格朗日乘子法 - KKT条件 - 对偶问题
接下来准备写支持向量机,然而支持向量机和其他算法相比牵涉较多的数学知识,其中首当其冲的就是标题中的拉格朗日乘子法.KKT条件和对偶问题,所以本篇先作个铺垫. 大部分机器学习算法最后都可归结为最优化问题 ...
- 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...
- 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
[整理] 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...
随机推荐
- android 程序开机自启动
今天遇到程序开机自启动,然后查了一下,很简单,就记录一下. 开机自启动,一般我们是开启启动一个广播,然后在广播里启动Activity或者别的服务. 我们要做的很简单,就是在AndroidManifes ...
- cookie sessionStorage localStorage 区别
sessionStorage 和 localStorage 是HTML5 Web Storage API 提供的,可以方便的在web请求之间保存数据.有了本地数据,就可以避免数据在浏览器和服务器间不必 ...
- 【转】对抗拖库 ―― Web 前端慢加密
0×00 前言 天下武功,唯快不破.但密码加密不同.算法越快,越容易破. 0×01 暴力破解 密码破解,就是把加密后的密码还原成明文密码.似乎有不少方法,但最终都得走一条路:暴力穷举.也许你会说还可以 ...
- MsSqlServer 复制分发概述
Replication方案可以分为Snapshot Replication, Transactional Replication, Peer-2-Peer Replication, Merge Rep ...
- Shell_参数替换(転)
From: http://www.cnblogs.com/yjf512/archive/2013/06/03/3114803.html Bash中的$符号的作用是参数替换,将参数名替换为参数所代表的值 ...
- mysql 主从复制原理
主从形式 mysql主从复制 灵活 一主一从 主主复制 一主多从---扩展系统读取的性能,因为读是在从库读取的: 多主一从---5.7开始支持 联级复制--- 用途及条件 mysql主 ...
- 特征工程 dataframe格式
import os import copy import codecs import operator import re from math import log from pyspark.sql ...
- 反向代理及如何获得原始IP
在现代网站架构中,scalability 已经不再是可有可无的质量属性,而是决定着网站的生死攸关,所以稍微上规模的站点都不会只有一个web server,让internet clients 直接与其交 ...
- C# 判断是否联网
public static class Internet { [DllImport("winInet.dll")] private static extern bool Inter ...
- Nginx配置配置文件nginx.conf的设置
引用自:http://www.ha97.com/5194.html #定义Nginx运行的用户和用户组user www www; #nginx进程数,建议设置为等于CPU总核心数.worker_pro ...