tarjan算法求桥双连通分量 POJ 3177 Redundant Paths
POJ 3177 Redundant Paths
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 12598 | Accepted: 5330 |
Description
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output
Sample Input
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
Sample Output
2
Hint
One visualization of the paths is:
1 2 3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +
Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.
1 2 3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -
Check some of the routes:
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7
Every pair of fields is, in fact, connected by two routes.
It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.
/*这是一个63分的代码,因为没有注意到题目中的重边问题,以后要注意有重边的图和没有重边的图的tarjan求桥的算法,是不同的*/
#include<iostream>
using namespace std;
#include<cstdio>
#define N 5001
#define R 10010
#include<stack>
#include<queue>
#include<cstring>
queue<int>que;
bool qiao[R]={},visit[N]={},visit_edge[R<<];
struct Edge{
int u,v,last;
}edge[R*];
int head[N],du[N],f,r,father[N],dfn[N],low[N],topt=,t=-;
int ans[N]={};
void add_edge(int u,int v)
{
++t;
edge[t].u=u;
edge[t].v=v;
edge[t].last=head[u];
head[u]=t;
}
void input()
{
memset(head,-,sizeof(head));
int u,v;
scanf("%d%d",&f,&r);
for(int i=;i<=r;++i)
{
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
r<<=;
}
void tarjan(int u)
{
dfn[u]=low[u]=++topt;
for(int l=head[u];l!=-;l=edge[l].last)
{
int v=edge[l].v;
if(!visit_edge[l]&&!visit_edge[l^])
{
visit_edge[l]=true;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u]) qiao[l]=true;
}
else low[u]=min(low[u],dfn[v]);
}
}
}
void suo_dian()
{
for(int i=;i<=f;++i)
{
if(!visit[i])
{
ans[++ans[]]=i;
que.push(i);
visit[i]=true;
while(!que.empty())
{
int x=que.front();
father[x]=i;
que.pop();
for(int l=head[x];l!=-;l=edge[l].last)
{
if(qiao[l]||visit[edge[l].v]) continue;
que.push(edge[l].v);
visit[edge[l].v]=true;
}
} }
}
}
void re_jiantu()
{
for(int l=;l<=r;++l)
{
if(father[edge[l].u]!=father[edge[l].v])
{
du[father[edge[l].u]]++;
du[father[edge[l].v]]++;
}
}
}
int main()
{
freopen("rpaths.in","r",stdin);
freopen("rpaths.out","w",stdout);
input();
for(int i=;i<=f;++i)
{
if(!dfn[i])
tarjan(i);
}
suo_dian();
re_jiantu();
int sum=;
for(int i=;i<=ans[];++i)
if(du[ans[i]]==)
sum++;
printf("%d\n",(sum+)/);
fclose(stdin);fclose(stdout);
return ;
}
正确代码及模板:
#define N 5011
#include<iostream>
using namespace std;
#define M 10010
#include<cstdio>
#include<cstring>
struct Gra{
int n,m,ans,head[N],topt,dfn[N],low[N],t,cnt[N];
bool visit[M<<];
struct Edge{
int v,last;
}edge[M<<];
void init(int f,int r)
{/*初始化不要在上面,上面只是声明,不是变量*/
ans=,topt=,t=-;
n=f;m=r;
memset(head,-,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(cnt,,sizeof(cnt));
memset(visit,false,sizeof(visit));
}
void add_edge(int x,int y)
{
++t;
edge[t].v=y;
edge[t].last=head[x];
head[x]=t;
}
void tarjan(int u)
{
dfn[u]=low[u]=++topt;
for(int l=head[u];l!=-;l=edge[l].last)
{
if(visit[l]) continue;
visit[l]=visit[l^]=true;/*找到无向边拆成的另一条边*/
int v=edge[l].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[v],low[u]);
}
else low[u]=min(low[u],dfn[v]);/*多次返祖*/
}
}
void start()
{
for(int i=;i<=n;++i)
if(!dfn[i])
tarjan(i);
for(int i=;i<=n;++i)/*处理缩点以后的图*/
for(int l=head[i];l!=-;l=edge[l].last)
{
int v=edge[l].v;
if(low[i]!=low[v])
cnt[low[v]]++;
/*low[x]!=low[y]说明从low[y]回不到low[x],那么low[x]--low[y]是一条桥,因为tarjan中多次返祖*/
}
for(int i=;i<=n;++i)
if(cnt[i]==) ans++;/*统计度数是1的叶子节点的数目*/
printf("%d\n",(ans+)>>);
}
}G;
int main()
{
int n,m;
scanf("%d%d",&n,&m);
G.init(n,m);
int x,y;
for(int i=;i<=m;++i)
{
scanf("%d%d",&x,&y);
G.add_edge(x,y);
G.add_edge(y,x);
}
G.start();
return ;
}
tarjan算法求桥双连通分量 POJ 3177 Redundant Paths的更多相关文章
- [双连通分量] POJ 3177 Redundant Paths
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13712 Accepted: 5821 ...
- POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)
POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...
- POJ 3177 Redundant Paths (桥,边双连通分量,有重边)
题意:给一个无向图,问需要补多少条边才可以让整个图变成[边双连通图],即任意两个点对之间的一条路径全垮掉,这两个点对仍可以通过其他路径而互通. 思路:POJ 3352的升级版,听说这个图会给重边.先看 ...
- poj 3177 Redundant Paths(边双连通分量+缩点)
链接:http://poj.org/problem?id=3177 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任 ...
- POJ 3177 Redundant Paths(边双连通分量)
[题目链接] http://poj.org/problem?id=3177 [题目大意] 给出一张图,问增加几条边,使得整张图构成双连通分量 [题解] 首先我们对图进行双连通分量缩点, 那么问题就转化 ...
- [学习笔记] Tarjan算法求桥和割点
在之前的博客中我们已经介绍了如何用Tarjan算法求有向图中的强连通分量,而今天我们要谈的Tarjan求桥.割点,也是和上篇有博客有类似之处的. 关于桥和割点: 桥:在一个有向图中,如果删去一条边,而 ...
- POJ 3177 Redundant Paths (tarjan边双连通分量)
题目连接:http://poj.org/problem?id=3177 题目大意是给定一些牧场,牧场和牧场之间可能存在道路相连,要求从一个牧场到另一个牧场要有至少两条以上不同的路径,且路径的每条pat ...
- poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11047 Accepted: 4725 ...
- POJ 3177 Redundant Paths & POJ 3352 Road Construction(双连通分量)
Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...
随机推荐
- Uxf框架引入Rest控制器特性
引入Rest风格接口的特性,主要是为了适应平台化和移动化开发的需要. 移植自ThinkPHP项目的RestAction. REST(Representational State Transfer表述性 ...
- PHP imagecopyresampled 参数图示
- redis 慢日志 slowlog
1 slowlog是什么 redis的slowlog是redis用于记录记录慢查询执行时间的日志系统.由于slowlog只保存在内存中,因此slowlog的效率很高,完全不用担心会影响到redis的性 ...
- galera cluster DDL节点间状态不一致的问题
近期某个系统中的galera cluseter环境发生A DDL操作后,B节点未同步的情况,同时B节点的errorlog中有如下警告信息: 2016-07-23 17:31:32 18920 [War ...
- 安装多JDK后,java编译环境和运行环境版本(JDK版本) 不一致解决:
由于之前安装过JDK1.7 ,现在一个项目是JDK1.5的,那么需要更改了环境变量了,此处不再赘述如何设置JDK 的环境变量了.然后网上找来方法: 在安装多个jdk后,出现了java -version ...
- ABAP->内表数据下载到CSV格式(原创转载请注明)
需求:将alv上面的数据计算到内表中区,然后通过自定义按钮进行下载到csv格式中 附加:现在基本不用csv导出了,但是有些变态需求强行要求,也只好研究出来了,excel与txt导出很简单,那就不多说了 ...
- 从web移动端布局到react native布局
在web移动端通常会有这样的需求,实现上中下三栏布局(上下导航栏位置固定,中间部分内容超出可滚动),如下图所示: 实现方法如下: HTML结构: <div class='container'&g ...
- android在Data目录内置可删除的APP
一.准备工作:make_ext4fs.mkuserimg.sh.simg2img,把它们跟要修改的 .img.ext4(或.img)文件放置到同一个目录下 二.转换源文件为img格式( .img则略过 ...
- C实现通用数据结构--单链表
单链表概述 单向链表(单链表)是链表的一种,其特点是链表的链接方向是单向的,对链表的访问要通过顺序读取从头部开始. 从概念上讲,可以把链表想象成一系列连续的元素,然而,由于这些元素是动态分配的(C语言 ...
- iOS 工厂方法模式
iOS工厂方法模式 什么是工厂方法模式? 工厂方法模式和简单工厂模式十分类似,大致结构是基本类似的.不同在于工厂方法模式对工厂类进行了进一步的抽象,将之前的一个工厂类抽象成了抽象工厂和工厂子类,抽象工 ...