试题描述
现在有一大堆数,请你对这些数进行检验。
输入
第一行:CAS,代表数据组数(不大于500000),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数。你需要对于每个数字检验是否是质数。
输出
共一行,输出质数的数量,保证是在64位长整形范围内的正数。
输入示例
4 2 3 5 4
输出示例
3
其他说明
数据范围: 保证cas<=100000,保证所有数字均在64位长整形范围内。 请尽量优化你的程序,包括OI优化。 欢迎暴力法不服来辩呦→ →

首先有这样一个定理:

若p是一个质数,x是一个整数,且x^2 mod p = 1,那么x ≡ ±1 (mod p)。

证明:x^2 mod p = 1       ->       p | x^2 - 1        ->       p | (x - 1)(x + 1),又因为p是质数故x-1与x+1中有一个是p的倍数。

但这个定理的逆定理是个假命题,不过它很少有反例。我们就可以利用逆定理来判定素数了。

设待测数为n,任取一个比n小的正整数a,设 n - 1 = r * 2^s,若n是质数则以下条件至少有一个成立:
1.a^s mod n = 1

2.存在一个整数i满足:0<=i<s且a^(d*(2^i)) mod n = -1

重复以上步骤3至4次即可稳定出解。

#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#define rep(s,t) for(int i=s;i<=t;i++)
using namespace std;
inline int read() {
int x=,f=;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-;
for(;isdigit(c);c=getchar()) x=x*+c-'';
return x*f;
}
typedef long long ll;
ll pow(ll n,ll m,ll p) {
ll ans=,t=n;
while(m) {
if(m&) (ans*=t)%=p;
(t*=t)%=p;m>>=;
}
return ans;
}
int check(ll a,ll n,ll r,ll s) {
ll ans=pow(a,r,n);if(ans==) return ;
rep(,s) {
if(ans==n-) return ;
(ans*=ans)%=n;
}
return ;
}
int isprime(ll n) {
if(n==) return ;
if(n<=||!(n&)) return ;
int r=n-,s=;
while(!(r&)) r>>=,s++;
rep(,) if(check(rand()%(n-)+,n,r,s)) return ;
return ;
}
int main() {
int T=read(),ans=;
while(T--) ans+=isprime(read());
printf("%d\n",ans);
return ;
}

COJ0700 数学(一)的更多相关文章

  1. 数学思想:为何我们把 x²读作x平方

    要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...

  2. 速算1/Sqrt(x)背后的数学原理

    概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...

  3. MarkDown+LaTex 数学内容编辑样例收集

    $\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...

  4. 深度学习笔记——PCA原理与数学推倒详解

    PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...

  5. Sql Server函数全解<二>数学函数

    阅读目录 1.绝对值函数ABS(x)和返回圆周率的函数PI() 2.平方根函数SQRT(x) 3.获取随机函数的函数RAND()和RAND(x) 4.四舍五入函数ROUND(x,y) 5.符号函数SI ...

  6. *HDU 2451 数学

    Simple Addition Expression Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  7. 如何解决Maple的应用在数学中

    对任意数学和技术学科的研究员.教师和学生而言,Maple是一个必备的工具.通过Maple,教师将复杂数学问题注入生命,学生的精力集中在概念理解上而不是如何使用工具上,研究员可以开发更复杂的算法或模型. ...

  8. 如何让Maple中的数学引擎进入你的桌面应用程序和网站

    MapleNET数学服务套件将Maple 2015强大的数学引擎引入您的应用程序和网站.使用MapleNET,您可以添加数学计算和可视化功能到网页和桌面程序中,通过互联网/局域网分享“活”的Maple ...

  9. 【原创】开源Math.NET基础数学类库使用(07)常用的数学物理常数

                   本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 1.前 ...

随机推荐

  1. HDOJ 1596

    9899828 2013-12-27 16:42:37 Accepted 1596 3312MS 6668K 711 B C++ 泽泽 floyed暴力 #include<cstdio> ...

  2. [ruby on rails] 跟我学之(4)路由映射

    前面<[ruby on rails] 跟我学之Hello World>提到,路由对应的文件是 config/routes.rb 实际上我们只是添加了一句代码: resources :pos ...

  3. Java和C#运行速度对比:Java比C#快约3倍

    测试条件: Java版本: Java 8, .NET版本:v4.0, Release模式,针对x86平台优化 单线程模式. 测试1:(测试1的代码摘自http://blog.csdn.net/houj ...

  4. MVC 修饰标签

    MVC中的修饰标签有很多用途.它以修饰标签形式应用在控制器或控制器中的动作上. 最先想到的就是AcceptVerbs标签,在创建的时候,如果导航到创建视图,但不创建,则: public ActionR ...

  5. String to Integer

    Implement function atoi to convert a string to an integer. If no valid conversion could be performed ...

  6. 【leetcode】Implement strStr()

    Implement strStr() Implement strStr(). Returns the index of the first occurrence of needle in haysta ...

  7. 那些臭名昭著的sql

    两个或多个表关联,没写where条件,大量的笛卡尔值,严重时会导致数据库有问题. select * from a, b left join c on b.id = c.id left join d o ...

  8. 使用Memory Analyzer tool(MAT)分析内存泄漏(二)

    转载自:http://www.blogjava.net/rosen/archive/2010/06/13/323522.html 前言的前言 写blog就是好,在大前提下可以想说什么写什么,不像投稿那 ...

  9. php 字符串处理

    <?php $a = " n001|n002|n003|n004 "; //echo strlen($a);//取字符串的长度 //var_dump(strcmp(" ...

  10. **对比$_POST、$GLOBALS['HTTP_RAW_POST_DATA']和file_get_contents('php://input')

    最近在开发微信接口,又学到了一些新的技术点,今天就把学到的关于接收数据的技术点给简单的罗列下. public function __construct($token, $wxuser = ''){ $ ...